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Preface

This study was designed to research and develop the methodology necessary

to implement a general computer program that determines an approximate solu-

tion to a system of Fredholm integral equations. The computer program was -e

designed to be easily converted into an excellent research and analysis tool for the

Defense Nuclear Agency's underground nuclear effects simulation testing program.

Due to the svmbols used during the study, two lists of symbols are provided.

The first List of Symbols contains the symbols used to develop the methodology
-JI

for this study. The second list is located in Tab 1 of Appendix C and contains all

the variables used in the development of the computer program.

In conducting this study, I received guidance and strength from a number of

people. First. I would like to thank my thesis advisor LCDR. Kirk A. Mathews ..,

for the assistance and knowledge he provided during my study. I would also like

to thank my thesis committee; Dr. George John, Maj. Jim A. Lupo, and Lt. Col.

Albert Alexander (from the Defense Nuclear Agency) for their assistance in coin-

piling and completing this final copy of my thesis. Also a special thanks to

LCDR. Mathews and Lt. Col. Alexander for their assistance in arranging my

assignment to Field Command Defense Nuclear Agency as radiation diagnostician

based on the knowledge gained during this study. Lastly, I would like to thank

my wife, Karen, for her needed assistance in typing as well as moral support dur-

ing this study.

Russell B. Daniel
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Abstract
p|

The purpose of this study was to develop the methodology for and to imple-

ment a computer program to approximate a solution to a system of Fredholm

integral equations. The system of equations used in this study is representative of

the equations formed during the detection of pulsed radiation using a series of

detectors with asymmetric response functions. Though general in nature and

applicable to all systems of Fredholm integral equations, the equations studied are

of importance to the Defense Nuclear Agency with regard to the measurement of

radiation spectra during underground nuclear effects simulation testing.

The deconvolution or solution technique consisted of representing the

unfolded spectrum as a weighted sum of basis functions. This unfolded spectrum,

the actual spectrum, and a predicted spectrum were then used to form a test

statistic. By adjusting the parameters in the basis functions and their weights. )2

was minimized and the unfolded spectrum was corrected to approximate the

actual spectrum.

The methodology for this deconvolution technique was then converted into a

general computer program. The validation cases conducted on the two types of

spectra confirmed the reliability of the methodology and the computer program.
U

Additionally, an initial study with simulated measurement error added to the

measured-to-predicted ratios showed that the actual spectrum could not be

returned exactly. The second study approximated the actual spectrum with an

unfolded spectrum using a second set of basis functions. An acceptable approxi-

mation was conducted; however, certain artifacts were discovered in the unfolded

spectrum.

xi
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The validation cases and preliminary test cases conducted prove that the 4.

computer program based on the methodology presented in this study is a viable S

means of approximating an actual radiation spectrum. Using this study and com-

puter program as a starting point, the study of new basis functions and the effect

of how well the actual spectrum can be approximated based on the number of

detectors available to determine the spectrum is recommended.

a %
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AN APPROXIMATION TECHNIQUE FOR SOLVING
. A SYSTEM OF FREDHOLM INTEGRAL EQUATIONS

FOR ASYMMETRIC DETECTOR RESPONSE FUNCTIONS e

1. Introduction

Background

Approximate solutions to systems of Fredholm integral equations are needed ."-

bv the Air Force in many fields of study, ranging from acoustics to optics. Such

solutions also occur in disciplines as varied as geology and astronomy. An

instance of particular importance to the Air Force arises in the measurement of

radiation spectra emitted by nuclear devices detonated underground by the

Defense Nuclear Agency for simulation of nuclear weapons effects. This study

develops an approximate solution for a set of Fredholm integral equations of type -' -

1 of the following form:

where fm JS(E)R(E)dE()
where

Y,!'= the measured signal of the ith detector

S, (E) - the actual spectrum as a function of energy .

R,(E) - the calibrated response function of the ith

detector as a function of energy

In the detection of pulsed radiation, a set of detectors covering various energy

ranges is used to obtain a set of measured signals. Each of these measured signals

can be represented by an equation of the form of Equation (1). Since the response

functions of these detectors are not rectangular in shape with neglible width and

since a finite number of detectors must be used, only a limited resolution of the

actual spectrum can be achieved. In order to achieve a reasonable resolution a

filter-fluorescer detection system is utilized. The detectors and their response

functions are discussed in detail in Section 11.

1-1 I
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Also, the experimenter does not know the actual spectrum or the exact

response functions of the detectors. However, the experimenter can calibrate the

detectors used and produce calibrated response functions for the detectors. The

experimenter can also predict the shape of the actual spectrum based on source

design and previous measurements. Thus, at the end of the experiment, the

experimenter has the measured signals, a predicted spectrum, and the calibrated

response functions of the detectors to use in approximating the actual spectrum.

The procedure used to conduct this approximation is called deconvolution or

unfolding.

Problem

The measured signals discussed above are the best information the experi-

menter has concerning the ideal signal (the error free signals from the actual spec-

trum.) These measured signals contain recording error and transmission error in

4. addition to the error due to the response functions. These errors are discussed in

detail in Section II. The main problem addressed in this study was the develop-

ment of the methodology necessary to conduct a general deconvolution of the

actual spectrum from the set of calibrated response functions and the set of meas-

ured signals noted in Equation (1). In other words, the known measured signals,

calibrated response functions, and the predicted spectrum are used to determine

an unfolded spectrum. When this unfolded spectrum is folded with the calibrated

response functions, an approximation to the measured signals are returned. This

unfolded spectrum is then used as an approximation to the actual spectrum.

Secondly, a computer program was developed to conduct this deconvolution using

- various basis functions to construct the unfolded spectrum.

1-2
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* Scope

' "'" Since unclassified experimental data was unavailable, this study considered

spectra that were constructed of either normalized planckian black body distribu-

tions, called planckians, or of cubic splines. During the study, a trial spectrum

was constructed and used as the actual spectrum. This spectrum was then used

to calculate the ideal signals or measured signals if simulated measurement errors

are introduced. First, a study was conducted to determine if the basis functions

- could be used to unfold an actual spectrum produced from the same type of basis

functions with no error introduced. Then a study was conducted to demonstrate

m- the effects of simulated measurement error in the measured-to-predicted ratios on

the unfolded spectrum. This simulated error represented the errors between the

.,:. ideal signal and the measured signal. Finally, a study was conducted to deter-

mine if the basis functions could be used to unfold an actual spectrum constructed

-. ifrom another set of basis functions. The energy range considered in this study

was from EP to 128E ° , where EP (the k edge of the fluorescer for the first detec-

tor) is used as a convenient arbitrary energy unit.

Assumptions

In the development of the methodology, a basic assumption was that the

nonuniqueness of the actual spectrum and the errors developed in the mathemat-

ics of an analytic solution required the approximation technique to be numerical.

Also in order to define or bound the study and to allow a test method to be

developed, the following assumptions are made:

1. Twenty detectors are available to conduct the experiment. Thirteen

detectors have a closed response function and seven detectors have an

open response function, as described in Section II.

2. A resolving power (E center/ A E) of about 1.5 is desired.

1-3
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3. The exact response functions are equal to the calibrated response func-

% tions, as described in Section 1I. (This does not restrict the applicability

of this analysis, since calibration errors are indistinguishable from other

measurement and recording errors.) .

General Approach

The approach used in this study was to define an unfolded spectrum using a

series of basis functions:
.q

S.(E)= aj Fj(E,P) (2) 4.

j-1
where

S.(E) = the unfolded spectrum

a the coefficient for the jth basis function

Fj(E,P) = the jth basis function

n= the number of basis functions

E E energy
P - the parameter(s) of F,

The next step was to compute a test statistic using the ratios of the ideal .4

signal to the predicted signal and the ratios of the unfolded signal to the predicted

signal, together with the measurement uncertainties of these ratios. These ratios

are defined in detail in Section 111. This k2 test statistic was then minimized using

the Fletcher-Powell technique to vary the parameters and weighting factors or

-- coefficients in the basis functions of the unfolded spectrum. The term parameters

- will refer to the parameters of the function as well as the coefficients for the func-

tion in the remainder of this study.

,- Sequence Of Presentation

Section II of this study presents a detailed analysis of the problem including

other deconvolution methods currently being used and possible errors to be con-

1-4
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sidered. Section III presents the theory used to develop the computer program

while Section IV presents the development of the computer program. Section V

presents the results and a discussion of these results for the validation cases and .,

the test cases conducted using the computer program. The test cases investigated

the strengths and weaknesses of the two types of basis functions and the effect

simulated measurement error in the measured-to-predicted ratios had on the

unfolding technique using these basis functions. Section VI then summarizes the

study and presents my conclusions. Recommendations for future studies are

presented in Section VII.

1-5
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11f. Detailed Problem Analysis

Introduction
=..

In Section I, the main problem addressed was stated to be the determination

of the methodology and the implementation of a computer code to approximate

the actual spectrum in Equation (1), the Fredholm integral equation. The pur-

pose of this section is to describe the types of errors found in unfolding tech-

• .niques, to explain how these errors were handled, and to present the two most

popular unfold techniques.

*. Errors Introduced During Unfolding

During the unfolding process, four main errors contribute to the uncertainty

."in the unfolded spectrum. The first is simply the measurement error introduced

in the measured signals. If the same test was conducted a number of times, a

Smean value for the measured signals could be established along with a standard

deviation. This measurement error includes the errors introduced form the

transmission of the ideal signals. the recording of the ideal signals. and the read-

ing of the ideal signals. However. in undergroand testing and the detection of

co?,mic radiation by satellites, the experimenter only makes one test. Thus, the

experimenter must be aware of and account for the possible error introduced by

the statistical nature of the measured signals.

The second error is found in the response functions of the detectors. No

matter how carefully an experimenter calibrates the detector-, one %ill not be atdle4-

to determine the exact response functions of the detectors. This difference

i. between the exact response functions and the calibrated response functions is the

second type of error introduced in the unrtIding procedure.

The third error is found in the mathematics of the unfolding process. TheL. "p
error is introduced by converting the Fredholm integral into a -,ummation over

2-1
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very small energy intervals. However, this error can be reduced so as to be negli-

gible compared to the other errors by selecting the proper energy intervals or bin
I

widths to evaluate the integral.

The final error to be discussed is that caused by the nonuniqueness of the

solution or approximation to the actual spectrum. Because the approximation of
I

the actual spectrum requires an infinite amount of detail to be resolved from a

finite amount of information, the solution is non-unique and the problem is ill-

posed. The limited number of detectors and their response functions ensure that

the experimenter can not resolve all the detail of the spectrum. Thus, the

unfolded signals of a number of spectra could be identical even though the spectra

are different. If a detector with a response function which is shaped like a rectan-
S

gle with neglible width was available at every energy level, the actual spectrum

could be determined exactly. Since this is not possible or feasible, the experi-

menter must be reminded of the nonuniqueness of the approximation to actual

spectrum or the unfolded spectrum.

Errors in Actual Practice Versus Simulated Errors in This Study

Of the four errors introduced above, two are handled differently in thi., study

than they are in actual practice. In actual practice, the measurement error and

the error introduced by not knowing the exact response functions are present in

the measured signals. These errors are then carried over to the nasured-to-

predicted ratios. However in order to account for these errom, the experimenter

will approximate the standard deviation of these measured-to-predicted ratios, T'. 

and use this as a weighting factor for the \2 test statistics discus,,e in t t, next

section. This a, is based on the knowledge gained from past experiments and the

calibrations (Ynducted on the detector-."

In this study, it was assilii.,tthat the exact response functin, Aere equal to

the calibrated response functions dnd since the signals were not measured, recorde.

.) .)



or transmitted, the measurement errcrs normally found in the measured signals

were not present. Thus, when an actual spectrum was folded with the calibrated

response functions to determine a set of measured signals, these two types of

error, the measurement error and the calibration error, were not present and the

measured signal was equal to the ideal signal. In order to introduce these errors

in this study, an option to apply a normal distribution to the measured-to-

predicted ratios was included. This is discussed in detail in Section I.

The third error, the error due to evaluating the Fredholm integrals, is present

in both the actual case and this study. As discussed in Section II1, the error

becomes negligible in both cases by selecting a small bin width. Finally the fourth

error is also a part of both cases and was demonstrated by studying the unfolding
4..

of an actual spectrum using the two different sets of basis functions.

The mathematical propagation of the four errors discussed above was not

. c uonsidered in this study. However, the propagation of the errors was demon-

strated by the study conducted using the simulated measurement error. Also, the

calibration error may be considered as part of the simulated measurement error.

Current Unfolding Techniques

A number of computer programs have been developed to approximate the

actual spectrum implicitly given in Equation (1). However, two techniques, the

ite-rative technique and the cubic spline technique, are the m, st 1,mnmon (6). This

Section will dscribe the two techniques and some of their weaknesses.

Iterative Technique (6). The widely used iterative technique starts by

folding a trial spectrum with the calibrated response functions of the detectors

and comparing these measured signals to the measured signals from the experi-

ment. The trial spectrum is then modified and smoothed to ensure non-negativity

and continuity. The procedure is then repeated until the two sets of measured
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signals converge. By allowing the measured signals to converge, various artifacts

such as discontinuities and spikes are usually introduced in the trial spectrum.

Thus, the procedure is generally continued only until the computed signals for the

trial spectrum are brought into an acceptable agreement with the measured sig-

nals, but stopped before unacceptable artifacts develop in the trial spectrum.

The iterative technique has three main limitations. First, because the itera-

tion is not allowed to converge, the shape of the unfolded spectrum depends on

the initial guess at the trial spectrum. Secondly, the technique provides little

information to allow for error analysis. Finally, the decision to stop the iteration

before unacceptable artifacts develop forces the technique to be user dependent.

Cubic Spline Technique (6). The cubic spline technique used here is based

on the method developed at the Lockheed Palo Alto Research Laboratory. The

technique consists of building an unfolded spectrum from a set of cubic splines

%"-ith each cubic spline in the set being multiplied by an expansion coefficient. The -..

cubic splines used are piecewise Lagrangian interpolating splines and are not the

cmnmion [R-tlines. In the cubic spline technique the knot locations are adjusted

:mid the numher ()f knots used is varied to otbtain the best iinfolded spectruni r"

,t lr ,it:tti,, t4 the actual , ptrum. The cubic spline technique is an excellent

:tppr(xillativl, techniqup: howkever, the niain likmita:tion ,f the ,-it -.ic pine tech-

[iiqiie i- the ,iepernlteicve on t he knot locations or l-oints wsed to dpvelop he 'i i-

-1 )lire,- . 'l'li- 1it it il i r, el'., tl -.ltwting the he-t I to .*n> fr th, t-

,'f re ,tlx I h ])i h, , t i. li -s.
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-11. Theoretical Development

.- C.; Introduction

In the last section, the overall problem and the two most common techniques

to solve this problem were presented. This section presents the theory used to

- develop the methodology for the computer program in this study, including the

-. : selection of the response functions; the definition of the various spectra and sig-

."-'nals; the formulation of a x2 test statistic; the minimization of this X2 test statis-

tic; the calculation of a normal distribution for simulating measurement error; and

the inclusion of a flux non-negativity constraint.

Response Functions

As stated in Section 1, this study assumes the exact response functions are

equal to the calibrated response functions and that twenty detectors will be used

in the experiment. Two types of detector systems will be used in this study. The

* • first detection system is a filter-fluorescer detection system and produces a closed

response function. This closed response function consists of a section that is simi-

lar to a narrow rectangle and is an approximation to an ideal response function.

This section is referred to as the "Inband" response and has a response between

the k-edge of the fluorescer and the k-edge of the filter. However, a second section

or tail section is also present in the closed response function. The tail section is

formed by the response of the detector to energies above the k-edge of the filter.

The closed response function is depicted in Figure 1.

The second detection system is a fluorescer detection system and produces an

open response function. This second set of response functions allows the experi-

menter to determine the measured signals using a different set of response func-

tions and thus reduce the possibility of errors in the measured signals from the

- -% 3-1
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response functions. The inband response function for this system is defined to be

' of the same width as the corresponding closed response function. This response

function is depicted in Figure 2.

The next step was to define the open and closed response functions. The

8" derivation of the response functions can be found in Appendix A, and is based on

a simplification of the detector response function presented by G.M. Gorbachenko

and others in reference (4). The response functions used in the study are asym-

metric and present a simple, but realistic and analytically representable shape.

Additionally, the response functions allow for an unbiased unfolding using various

basis functions to define the unfolded spectrum since ; the response functions are

not modeled by planckians or cubic splines. Equations (3) and (4) represent the

closed and open response functions used in this study.

" E < E,°
0.0

R,(E)= 1[j ---exp [- 2.0  exp --0.25 E,° ]} E <<E, (3)

,(r'O~" rl [ ' '1l}
T 1 -exp 2.0 E exp -1.5 E E>E'

0 .0 E < E,°

f I.exp [3 .0O 1 E >E,'

where

R,- the closed function of the ith detector

R, the open response function of the ith detector

-'jo E the k-edge of the fluorescer for the ith detector

Ei - the k-edge of the filter for the ith detector

E - energy

i - the ith detector

'.*4* .*3.-
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With each detector having a resolving power of about 1.5, the experimenter

can achieve a fifty percent overlap in the inband response functions of the detec- s

tors by using thirteen closed response detectors. The other seven detectors can le

then be used as open response detectors covering the entire energy range. With ".
'0jo

the detectors arranged in this manner, the experimenter is able to detect the entire

spectrum using the inband response functions even if a detector fails. This fact is

extremely important when fielding experiments. For this detector arrangement,

the k-edges of the filter and/or fluorescer for the detectors are as listed in Table 1.

Thus, Equation (3) corresponds to detectors 1 to 13 and Equation (4) corresponds

to detectors 14 to 20.

TABLE IK-Edzes for th 0 Detectors (a) °:.
Det.# E;°" E..' Det. ELo  E.' .

1 1.0 2.0 1L 12.0 4.0
2 2.0 4.0 12 24.0 48.03 4.0 8.0 13 48.0 96.0."'

0 16.0 14 1.0
5 16.0 390 15 2.0"

6 32.0 64.0 16 4.07 64.0 1 28.0 17 8.0 .-.
8 1.5 3 0 is 16.0 -'9 6.0 19 39.0

10 I6. 12.0 20 64.0

a. E . and E,' are computed with respect to E ° '

Definition of Spectra
I

During the radiation detection and deconvolution process, three spectra are

required. The first spectrum is the actual spectrum (Sa(E)). The actual spectrum

is unknown and the goal of the deconvolution process is to recover an approxima-

tion to the actual spectrum from the measured signals as discussed below.

Secondly, the process requires a predicted spectrum (Sp (E)). This predicted spec-

trum is based on basic physics and on all the available knowledge concerning the
spectral shape. This predicted spectrum is used to calculate the measured-to-

: ~3-5 .



predicted and unfolded-to-predicted ratios. Thus, a wrong predicted spectrum

will still allow a proper deconvolution of the approximation to the actual spec- I.

trum; but in the iterative scheme and the multiplier spline approach, the detail of

the predicted spectrum is intentionally retained (6). Also, an error could be intro-

duced by dividing a very small predicted signal, or a predicted signal of 0.0, into a

large measured signal or vice versa. So the best possible predicted spectrum is

desired.

The final spectrum required is the unfolded spectrum (S. (E)). This spec-

trum is the approximation to the actual spectrum and is produced during the

deconvolution process (i.e. the unfolding of the Fredholm equation based on the

actual spectrum as implicitly defined in Equation (1)). This unfolded spectrum is

given by:

- S.(E) j aF(E,P) (5)

where

nj = the number of basis functions be used

a= = the coefficient for the jth basis function

F) (E,P) - the jth basis function and is a function of

energy and some other parameter(s) P

The basis functions are the building blocks used to construct the unfolded spec-

trum. This study examined planckians and cubic splines as sets of basis func-

tions. The planckian function is given by Equation (6) (1:5.5) and the cubic

spline basis functions are four point Lagrangian interpolating splines. The splines

are discussed in the next section and are derived in Appendix B.

Fj(E,P)=()
exp1 .

w here
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. T - the temperature of the black body distribution
k - the Boltzman constant

Flux Non-Negativity Constraint

In the detection of radiation spectra, a negative radiation intensity at any

energy level is physically meaningless. However by choosing an inappropriate set

of basis functions for the unfolded spectrum or having faulty data, a negative

spectral value may be produced during deconvolution. In order to ensure a posi-

tive spectrum, a non-negativity option was included in the computer program.

Equation (7) represents the technique used to ensure the spectra remained posi-

tive.

0o.0 (E)<O.o
S,'(E) E) S. (E)>O. (7)

where S. ' (E) is the constrained unfolded spectrum

Definition of Signals

Using the three spectra defined previously, four signals are defined. The first

is the ideal signal (Y,'(E). However, as discussed earlier, the ideal signal is unk-

nown due to calibration error in the response functions and measurement and

. detection uncertainty. These ideal signals are approximated by the measured sig-

nals from the detectors used during the experiment (",'(E)). These measured

signals contain the errors and uncertainty discussed above. This error and uncer-

tainty is represented by o,, the estimated standard deviation of the measured-to-

predicted ratios caused by the error distribution in Y'. The predicted signal

(YP(E)) is then given by:

Y,(E) fSp(E)R,(E)dE (8)
0

. 'where

3-7
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R3(E) - the calibrated response function of the ith

detector, either open or closed depending on the

detector

The final signal is the unfolded signal, (Y,(E)), and is given by:

Y,"(E) = f S,(E)R,(E)dE (9)
0

Formulation of X2 Test Statistic

For convenience, the measurements in this study are specified as ratios to the

predicted signals rather than in engineering units (which could not be interpreted

without detailed knowledge of the experiment). Thus, two ratios are defined.

0 The first is bi , the measured-to-predicted ratio. This ratio approximates the

ideal-to-predicted ratio. The measured-to-predicted ratio is given by:

jj N b, (10)

Y,

The second ratio is the unfolded-to-predicted ratio, c,, and is given by:

YI

Thus, the objective of the unfolding or deconvolution process is to choose the

aj's and parameter(s), P, in the F,(E,P)'s of Equation (5) to minimize the

difference between c,. (which depends on them) and b, (which is dependent on the

measurement data). In order to give appropriately increased weight to the more

accurate detectors, a test statistic was formulated and minimized. Equation

(12) defines the X2 test statistic.

9 - (12)

D .4,-- 8
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:-. -:-~ where

n' -= the number of detectors
a= the standard deviation in the ith measured-to-predicted ratio

However, before X2 can be minimized, the above mentioned signal integrals

must be evaluated. In this study, the composite midpoint rule was used to

numerically evaluate all integrals. Since the detectors only detected the spectrum

above E ° , the integrals were evaluated beginning at this energy. Also, the

integral was truncated at 128*E ° . The approximation to the signal integrals is

given in Equation (13).

128E,
nk

f S.,(E)R,(E)dE "E S.(E,)R,(Ek)AEk (13)
E 0  k-I

where

nk = the number of energy bins

Ek = the midpoint energy for the kth energy bin

AE k = the energy bin width of the kth bin

By selecting narrow energy bin widths, the error introduced in the unfolding pro-

cess because of Equation (13) becomes negligible when compared to the other

errors. Table 11 presents a study using one planckian basis function with aI equal

to 2.0 and a temperature of 5.OE? to evaluate the unfolded signal. Due to the

equal resolution of the detectors, only one detector was used as an example.

Minimization of )2 Test Statistic4.

Once ) was defined using a trial spectrum, an iterative process to minimize

was required. Three methods were studied. The first method conducted the

minimization by a least squares analysis. This method was useful for linear

optimization; but, the method was not applicable for adjusting the temperatures

in the planckians or adjusting the knots for the cubic splines. Also, the

3-g
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.r % TABLE 11
Comparison of the Unfolded Signals Using

Varyi Energy Bin Widths
Bin Width Yi R,

0.05 1.48 rlosed

3.65 oven
0.10 1.48 closed

S3.65 open
0.25 1.48 closed

3.85 ooen
S0.50 1.50 losed

3].66 onen
1.00 1.60 closed

3.66 open

method could not be used with the flux non-negativity constraint. Finally, a large

amount of computer time would be used calculating inverse matrices. The calcu-

lation of the inverse of a matrix also presented a possible problem. The matrix

could be singular or near singular. However, this last problem could be corrected

by selecting the appropriate basis functions. Based on the need for a flux non-

a negativity constraint, the method was rejected.

The second technique studied was the steepest descent method of minimiza-

tion. This technique proved reliable but required a large number of iterations

when the number of parameters in the basis function or the number of basis func-

tions was increased.

The Fletcher-Powell minimization technique was the third method tested and

was selected for use in this study. The method consists of calculating the gradlent

of the function, 2, and then multiplying this gradient matrix by a correction

matrix which modifies the search direction. A detailed description of the method

can be found in references (3) and (5:75-76).

Two problems do exist with this method. The Fletcher-Powell method was

designed for those functions for which the gradient can be determined analyti-

cally. However in this study, the gradient must be calculated numerically. Thus,

an additional error is added into the calculation. Secondly, the method is used to

3-10



find a local minimum and does not guarantee this local minimum to be the global

minimum. However, during this study the local minimum problem was not

encountered since the basis functions used contained only one local minimum or

global minimum.

Once the search direction was determined using the Fletcher-Powell method,

the distance to move in that direction had to be calculated. This distance was Id"

calculated by using a line search routine to minimize k2 (param.+t*s). In this

study, t is the step size or distance to move in the search direction and s is the

unit search direction calculated in the Fletcher-Powell mini. ization technique.

Note that a search direction is based on the gradient of and is a function of all

the parameters used in the basis functions.

Two line search routines were evaluated during this study. The first method ..

consisted of calculating the value of \2 at two locations and comparing the values.

09 The lower value for X' was retained and the search interval was expanded or

reduced in order to further minimize i. This method was continued until the

interval between two locations was less than a given value. Finally, the total dis-

tance travelled was calculated. This value was then used as the distance to travel

in the search direction.

The second method evaluated and the one selected for this study used the '-

value and slope of -2 at two locations to construct a cuhic fit. This 'iihic fit v. v

then used to determine the distance to travel in the search direction. Reference

(5:76-80) presents the method in detail. One modification to the method was

required. If the functional values of -< are equal and the slope of the second or

new location in the search direction is 0, then the search distance is set equal to

the distance traveled between the original k2 location and this final k location.

3-:'1
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Normal Distribution for Simulating Measurement Error

Once the basic unfolding technique was determined, the ability to add simu-

lated measurement error to b, was added. The method employed to calculate this

normal distribution for the simulated measurement error is found in reference

(7:949-953) and is given by:

Z, -o, (14)

where

-U, the jth number in a sequence of psuedo-random

numbers distributed in the interval [0.1]

n the number of psuedo-random numbers utilized

For simplicity, twelve values of U, were used. These values were obtained using a

random number generator available on the UNIX computer system. A sample of

ten normal variates generated in this way was tested for skewness and kurtosis.

In both tests, the distribution could not be rejected as normal.
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/** .-. * IV. Development of the Computer Program

Introduction

In Section MH, the ba-ic theory used to develop the methodology involved in

the deconvolution or unfolding technique was discussed. This section presents the

procedure used to convert this methodology into a general computer program.

The program was developed in five basic steps: development of the test spectra;

development of a planckian unfolding program; addition of simulated measure-

ment error- development of the cubic spline basis functions; and formalization of

the final program. Each step is presented in this section along with a discussion

of the problems encountered.

Development of Test Spectra

In the field experiment the signals are produced and measured during the

experiment; thus the predicted spectrum, S,(E), the calibrated response functions.

- . R ,(E), the measured-to-predicted ratios, b,, and the estimated tandard devia-

tions of the measured-to-predicted ratios, or,, are known. However in (rder to

conduct this study these values had to be simulated. By selecting parameters for

a set of basis functions, an actual spectrum was simulated using the same method

as used to produce an unfolded spectrum in Equation (5). The actual spectrum

was then folded with the calibrated response functions derived in Section [I1 to

sinulate the measured signals. The predicted spectrum and signals Were alsoJ p ro-

,duced in this manner. Finally, the estimated standard deviations for the

measured-to-predicted ratios were defined. This program assumes the same -tan-

(lard deviation for each detector.

Planckian Unfolding Code

The second step of the computer development consisted of writing a program

based on the methodology in Section III that could unfold the actual spectrum

4-1
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using the same type of basis function for the unfolded spectrum as was used to

construct the actual spectrum. In order to simplify the calculation required, the

integral used to calculate the predicted signal in Equation (8) was normalized.

The calibrated response functions were then multiplied by this normalization con-

stant. Thus, the measured-to-predicted and unfolded-to-predicted ratios are sim-

ply the measured signal and unfolded signal. However, the calibrated response

functions that were multiplied by the normalization constant must be used to cal-

culate these signals.

To accomplish this, a set of planckian basis functions were selected as the

basis functions for the actual, predicted, and unfolded spectra. The computer

program used the Fletcher-Powell minimization technique to vary the parameters

and coefficients in the basis functions of Equation (5) and determine the best

parameters for the unfolded spectrum. The program was validated using one, two,

and three basis functions. In all cases, the predicted spectrum was set equal to

the actual spectrum.

This validation is discussed in Section V. During this validation, the two

methods for determining the search distance is discussed in Section III were com-

pared. Since the cubic fit was faster and required fewer iterations of the line

search subroutine, it was selected.

During this validation a possible problem was unevered even though the

problem did not affect the validation. The operator of the computer program

should note that it is possible for the delta used in the 'alculation ofr the gradient

during the minimization of x2 to be greater than the step size or distance traveled

in the search direction. When this occurs, a possible error in the calculation of k2

could result.

The validation of the Fletcher-Powell method also included a oomparison of

" the number of iterations required before convergence for this method and the

4-2
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steepest descent method. The Fletcher-Powell technique was dramatically more

efficient and required fewer iterations, especially with the larger number of param-

eters.

Based on this first program and its modification, the technique selected to

minimize x2 was the Fletcher-Powell minimization technique with the modified

cubic line search routine. In addition the flux non-negativity constraint discussed

in Section III was used in this program.

Simulated Measurement Error

The third step of the program development was the user option to add simu-

-. lated measurement error to bi. The simulated measurement error was used to

account for the calibration errors and the errors from the measurement, recording,

and transmission of the ideal spectrum. This was accomplished by inserting the

-" computer code necessary to calculate Equation (14). The simulated measurement

error option was included in the program immediately after b, was calculated

and or was defined.

Cubic Spline Basis Function

Once the general program was developed and validated using the planckian

basis functions, another basis function subroutine was added to allow for the

actual, predicted, and unfolded spectra to be constructed from either planckians

or cubic splines.

The cubic spline basis function consisted of two linear segments. a planckian

tail, and a variable number of cubic spline segments. The segments were defined

between two consecutive knot locations. The cubic splines used were cubic

Lagrangian interpolating splines. The basis functions were then defined as the

combination of four segment functions. The details of this cubic spline basis func-

tion is presented in Appendix B.

4-3
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STwo forms of this new subroutine were considered and developed. The first

form required the knots used in determining the cubic splines to be fixed. This

' form was validated as shown in Section V. However, in order to effectively x

: minimize ) , the knots must be considered variable. In other words, the knots ".

I °"

w w, w om fti e uruiewere considered aarmedr developedspine. The finlvrinothprsra
fos equrdekosusdi eemnn the cubic splines wtvaibekossapsileto besi fuix.Ti

Deeon7.fX:

Decon.f is the final version of the deconvolution or unfolding program

presented in this study. The computer program allows for plaackian basis func-%

tions, cubic spline basis functions, or other spectra (input from a file) to be used "

as the actual and predicted spectra and either the planckiaks or the cubic splines

can be used to define the unfolded spectrum. The program then uses the por

• Fletcher-Powell minimization technique combined with the modified cubic line"'%

-a. search routine to minimize by modifying the parameters in the basis functions

ad.%

used to produce the final unfolded spectrum. The next section will present the

"'

validation and results of this program. In addition, the documentation andc-

pseudo-code for the program are presented in Appendix C and the source code is

presented in Appendi D.

4-
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* .V. Results and Discussion

Introduction

Section IV discussed the development of the computer program, during which

several validation cases were considered. This section presents those validation

cases as well as the results from the preliminary study on the effects of simulated

measurement error in the measured to predicted ratios and the weaknesses of the

two types of basis functions. For this study a final )2 value of less than or equal

to the number of detectors used was considered acceptable. Also, in this section,

the initial spectrum refers to the initial guess at the unfolded spectrum, and the

actual and predicted spectra are identical.

Validation Cases

The validation cases presented were developed to ensure the computer pro-

gram was functioning properly and to test the methodology used to construct the

computer program. The goal of the validation cases was to unfold the exact spec-

trum that was used to construct the measured signals. For these cases, an arbi-

trary spectrum was selected as the actual spectrum and this spectrum was then

folded with the calibrated response function3 to define the measured signals. As
S

mentioned above, the predicted spectrum was identical to the actual spectrum.

Also, simulated measurement error was not added to the measured-to-predicted

ratios. Finally, another arbitrary spectrum was selected as the initial guess at the

unfolded spectrum. In order to validate the computer program and the methodol-

ogy, the unfolded spectrum should converge to the actual spectrum.

Case BP. These cases represent the benchmark or validation cases for the

planckian basis functions. The three cases presented validate the use of one, two,
and three basis functions. The results of these validation ca-, - re presented in

Table Ill. In addition, a more detailed validation of the one basis function case is

presented in Appendix E. In all the planckian benchmark cases, the unfolded
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spectrum was indistinguishable from the actual spectrum when plotted as noted in

Table HI since the parameters of the unfolded spectrum converged to those of the

actual spectrum.

* TABLE III
Validation Cases for Planckian Basis Functions (a,b)

Case Spectrum Parameters(c)
BF1 BF2 BF3

a T a T a T
BP1 Act ual 2.0 5.0

Initial 1.0 6.0
Unfolded 2.0 5.0 9.8E-4

BP2 Actual 3.0 6.0 8.0 10.0
Initial 5.0 2.0 1.0 7.0

Unfolded 3.0 6.0 8.0 10.0 5.9E-3

BP3 Actual 8.0 5.0 2.0 10.0 1.0 15.0
Initial 3.0 2.0 4.0 6.0 2.0 8.0

Unfolded 8.0 5.0 1.9 9.9 1.1 15.0 2.6E-2

a. Convergence criteria: x2< 0.01 or less than a 1% change in ,' for successive
iterations

b. o .01
c. BF stands for basis function

Case BF. The first four BF cases represent using cubic splines with fixed

knots as the basis function and using the same knots for the actual, predicted,

and unfolded spectra. These cases validated the use of the cubic spline basis func-

tions with the methodology validated in the BP cases. The results of these cases

are presented in Table IV. Once again, the unfolded and actual spectra were

identical when plotted and the parameters of the spectra also converged.

Four additional cases were also considered. These last four cases were used

to validate the applicability of using fixed knots. In these cases, the knots used to

form the actual and predicted spectra were different than those used to form the

unfolded spectra. As expected, the deconvolution technique was unable to correct "-

for the error in the knot locations.
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Thus, all four cases yielded a x2 of greater than 20. The table of results and

plots for these cases can be found in Appendix E. Based on these results, the knot

locations were included as parameters in the basis functions.

TABLE IV
Validation Cases for Cubic Spline

Basis Functions with Fixed Knots (a,b,c)
Case Spectrum Cubic Coefficient T

BF1 & Actual 4.0 5.0 3.0 1.6 1.0 10.0
BF2(d)

BF1 Initial 2.0 7.0 1.0 3.0 4.0 10.0
Unfolded 4.0 5.0 3.0 1.6 1.0 10.0 4.3E-3

BF2 Initial 2.0 7.0 1.0 3.0 4.0 20.0
Unfolded 4.0 5.0 3.0 1.6 1.0 10.0 4.3E-4

BF3 & Actual 4.0 5.0 3.0 1.6 1.0 10.0
BF4(e)

BF3 Initial 2.0 7.0 1.0 3.0 4.0 20.0
Unfolded 4.0 5.0 3.0 1.6 1.0 10.0 2.4E-3

BF4 Initial 2.0 7.0 1.0 3.0 4.0 2.0
" Unfolded 4.0 5.0 3.0 1.6 1.0 10.0 6.6E-4

a. Convergence criteria: x2< 0.01 or less than a 0.0197o change in )2 for succes-
sive iterations.

b. = 0.01
c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of these splines and are

not listed.
d. Knots for case BF1 and BF2 were 5.0,10.0.25.0.50.0
e. Knots for case BF3 and BF4 were 10.0,25.0,50.0,80.0

Case BC. The BC cases were formulated to validate the computer pro-

gram using the cubic spline basis functions with variable knots. As explained in

Appendix B, these basis functions were formed by combining four, four point

Lagrangian interpolating polynomials. Each basis function was a function of the

knots selected to construct the polynomials and the intensity at these knot loca-

tions. The results of these cases are presented in Table V. The linear plots of the

actual and unfolded spectra for all cases are located in Appendix E.

These validation cases presented the following noteworthy points. First, the

study presented the difficulty the computer program had in varYing the knot loca-

tion. The program was only able to determine an acceptable spectra in three of

5-
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TABLE V
Cs SpcrValidation Cases for Cubic Spline

Basis Functions with Variable Knots (a,b,c)Case Spectrum Parameters k

Knots Coefficients T
BC1 Actual 5.0 30.0 5.0 3.0 15.0

60.0 2.0 1.0
Initial 2.0 15.0 1.0 4.0 8.0

35.0 6 0,2.0
Unfolded 12.0 13.0 4.8 1.5 13.0 230.0

28.0 0.44 1.5

BC2 Actual 5.0 10.0 4.0 5.0 10.0

25.0 50.0 3.0 1.6
1.0

Initial 2.0 15.0 3.0 2.0 5.0
35.0 60.0 5.0 1.0".%

2.0
Unfolded 4.0 11.0 4.0 4.9 10.0 5.4

28.0 53.0 2.7 1.6
0.88

BC3 Actual 5.0 10.0 4.0 6.0 10.0
25.0 50.0 5.0 3.0
80.0 2.0 1.0

Initial 2.0 15.0 1.0 3.0 4.0
30.0 45.0 5.0 4.0
60.0 3.0 2.0

Unfolded 2.4 13.0 3.9 4.8 12.0 19.0
37.0 49.0 4.2 2.3
62.0 2.0 1.8

BC4 Actual 5.0 30.0 5.0 3.0 15.0
60.0 2.0 1.0

Initial 4.0 35.0 4.0 4.0 13.0
50.0 3.0 2.0

Unfolded 4.5 30.0 5.0 3.2 15.0 0.026
60.0 2.0 1.0

a. 7i =0.01
b. Convergence criteria: ) < 0.01 or less than 0.1% change in k2 for successive

iterations

c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of these splines and are
not listed.

the four cases. The case that was rejected used three fixed knots and three vari-

able knots. This case represented the minimum number of knots possible in order
.-.

to have at least one section of the spectrum that is constructed from four cubic

.'.\ splines. This difficulty is most likely due to the fact that the six knot cubic is

constrained to a linear or planckian fit in all but one section. Thus, the small



.. .. variations in the knot locations cause only a small change in X2 and the computer

program is finally stopped due to such small changes in X2. More computer time

- could be used to determine if the value for X2 is finally reduced but a better solu-

tion is to select another set of basis functions, add more knots, or change the knot

locations. This is shown by the accuracy of the unfolded spectrum for case BC4

-: when the initial guess was close to the actual spectrum as compared to case BC1.

Finally, the validation results for the cubic spline basis functions show the

need for an accurate guess at the knot locations. By optimizing the selection of

• knots for the initial guess at the unfolded spectrum, the cubic splines with vari-

": able knots would resemble the cubic splines with fixed knots and a better unfolded

spectrum should be produced. This optimization could be conducted by unfolding

signals produced using the predicted prior to unfolding the real data. However,

this will not ensure the best knot are selected since the actual spectrum may not

4. compare to the predicted. Thus, the dependency of the cubic spline deconvolut ion

- technique on the knot locations is verified.

/ Test Cases

Once the final computer program was validated, two preliminary studies were

. conducted. The first was a study to determine the effect of simulated measure-

-' ment error in the bi 's on the deconvolution process. The second study was con-

ducted to demonstrate the degree to which the unfolded spectrum would approxi-

mate the actual spectrum if different basis functions were used for the respective

spectra.

Simulated Measurement Error Study. As stated, this study consisted

of adding a simulated measurement error to bi in order to simulate the measure-

ment errors discussed is Sections H and IV and which are present in the experi-

mental data. This simulated measurement error was constructed using Equation

(14). As noted, the normal distribution was scaled by ',., the standard deviation

"U' 5-5
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of the measured to predicted ratio. Ten cases with simulated measurement error

and one benchmark case without the simulated error were tested for each type of

basis function. A , of 0.15 was used in all cases. This U, was a relative error

and not an absolute error. In other words, the ', 's were the percent of error in

the b, s. The benchmark case was labeled case 0 while all other cases were num-

bered according to the number used as the seed for the random number generator.

Tables VI and VII represent the results of this study. Figures 3 thru 6 depict the

combined spectra for each case. Appe ndix F contains the individual plots of the

actual and unfolded spectra for each case.

TABLE VI
Noise Study For

Planckian Basis Functions (a)
Case Parameters -2  TF(c)

BF1 BF2 BF3
a T a T a T

Actual 8.0 5.0 2.0 10.0 1.0 15.0 11.0
Initial(d) 3.0 2.0 4.0 6.0 2.0 8.0 9.0

'PO 6.4 4.8 2.5 6.6 2.1 13.0 0.010 11.0
NP01 6.1 4.6 3.0 7.5 2.1 11.0 18.0 11.2
NP02 6.2 4.8 2.7 6.3 1.8 15.0 29.0 10.7
NP03 6.5 4.9 2.4 6.8 2.1 13.0 16.0 11.0
NP04 6.6 5.0 2.5 7.2 1.8 13.0 6.0 10.9
NPO5 4.8 4.2 3.5 7.0 2.1 12.0 13.0 10.4
NPO6 6.1 4.7 2.5 7.0 1.9 13.0 12.0 10.5
NP07 6.4 4.8 3.0 7.0 1.8 13.0 9.7 11.2
NP08 6.0 4.9 2.5 7.3 1.8 13.0 17.0 10.3
NPO9 6.2 5.0 3.1 7.0 1.4 13.0 15.0 10.7
NP10 6.1 4.7 2.6 6.9 2.0 13.0 18.0 10.7

a. Convergence criteria: x2< 0.01 or less than a 0.1% change in x 2 for succes-
sive iterations

b. BF represents basis function
c. TF stands for the total fluence from 0.0 to o

d. Same initial spectrum for all cases, results represent unfolded spectrum

t--
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.'..?:.'TABLE VIU

Noise Study for Cubic Spline .
Basis Function with Variable Knots (ak ".

Case Parameters
Knots Coefficient V

Actual 5.0 10.0 4.0 5.0 3.0 10.0
25.0 50.0 1.6 1.0

Input(c) 2.0 15.0 3.0 2.0 5.0 5.0
35.0 60.0 1.0 2.0

NCO 4.4 11.0 4.0 4.9 2.7 9.7 0.020
27.0 60.0 1.6 0.68

NC01 3.8 12.0 3.1 5.3 2.2 8.5 11.0
30.0 60.0 1.8 0.86

NC02 13.0 18.0 5.3 1.4 2.0 11.0 17.0 .,
35.0 61.0 1.1 0.57

NC03 5.7 8.7 3.5 4.8 3.8 7.5 9.6
42.0 68.0 1.4 0.55

N('04 3.5 9.7 3.1 4.5 2.8 9.6 5.5
33.0 60.0 1.7 0.62

NC05 3.1 14.0 4.2 5.3 0.92 7.3 9.4
19.0 68.0 1.8 0.49

NC06 3.6 10.0 3.1 5.0 2.9 10.0 8.8
33.0 60.0 1.4 0.61 1

NC07 5.7 10.0 4.1 5.0 3.2 13.0 7.2
33.0 60.0 1.9 0.39

N'108 3.2 9.7 2,8 4.5 2.5 10.0 11S.0
31.0 60.0 1.6 0.58

NC09 5.2 14.0 4.0 4.3 2.0 11.0 13.0
35.0 56.0 1.8 0.51

NCiO 3.4 9.4 3.6 4.8 3.0 10.0 18.0
32.0 60.0 1.5 0.66

a. Convergence criteria: < 0.01 or less than 0.1 change in \2 for successive
iterations

b. Fixed knots at 0.0.1.0.128.0 are implicit in definition of these splines and are
not listed

c. Same initial spectrum for all cases, results represent the unfolded spectrum

The results of the preliminary study concerning simulated measurement error

show that measurement error in the measured signals has little effect on the

unfolded spectrum. In all but one case, the final )2 was less than the number of

instruments used, 20. The relation between the locations or amounts of measure-

ment error and X2 was not determined in this study. However, this could be con-

sidered in a future study. In addition to this result, the simulated measurement

error study on the planckian basis functions showed that the tempprntires pro-

duced in the unfolded spectrum should not be considered the actual black body

,5-11
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temperatures, for multi-temperature spectra. However since only one spectrum

was considered a more detailed study should be conducted. This is shown by the

temperatures arrived at for the unfolded spectrum during the simulated measure-

ment error study. Also, since the planckians were normalized, the sum of the

coefficients approximates the total fluence for the spectru m. It should be noted

that the total fluence is accurate to about 5%' in the planckian cases tested. The

measured- to- predicted ratios are accurate to 15%c but some of the ratios are too

large while some are too small so the total fluence error is less or the accuracy is

better for the total fluence measurement.

It should also be noted that the values for -2 were smaller for the cubic

spline basis functions than for the planckian basis functions. Because the cubic

splines are local functions, the splines can fit the detail of the spectrum better

than the global functions like the planckians. Thus, the (2 should be lower.

Applicability of the Basis Functions Study. During the unfolding of
real data, the actual spectrum is not known so one can not select the set of basis

functions that were used to construct the actual spectrum. This study was used

to determine how well a set of basis functions could approximate an actual spec-

trum constructed from a different set of basis functions. Two actual spectra were

* approximated using an ideal situation in which simulated measurement error was

not added to the measured to predicted ratios. Also in both cases the non-

negativity constraint was applied. The first was an actual spectrum constructed

from three planckian basis functions. This spectrum was then approximated

using cubic spline basis functions with six, seven, and eight knots. The results of

this study are presented in Table VIII and the best approximation to the actual

spectrum is presented in Figures 7 and 8. All plots of the actual and unfolded

spectra are presented in Appendix F.

-.
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"" "TABLE VIII
Results of Fitting a Planckian Spectrum

with Cubic Spline Basis
Functions with Variable Knots (a,b,c)

Case Parameters
BF1(d) BF2 BF3

Actual 4.0 5.0 3.0 10.0 7.0 15.0
Knots Coefficients T

PCI Initial 2.0 15.0 0.30 0.50 0.60 8.0
35.0 0.20

Unfolded 2.3 3.9 -0.28 -4.8 0.17 12.0 71.0
30.0 0.22

PC2 Initial 2.0 15.0 0.30 0.50 0.30 8.0
35.0 50.0 0.20 0.10

Unfolded 1.0 12.0 -0.43 -3.5 11.0 38.0
34.0 49.0 0.12 -0.23 0.29

PC3 Initial 2.0 10.0 0.30 0.40 0.50 8.0
15.0 35.0 0.30 0.20 0.10
50.0

Unfolded 1.8 2.2 0.097 -0.38 -0.22 12.0 16.0
5.9 26.0 0.031 0.19 0.18

49.0

a. O, 0.15
b. Convergence criteria: k2< 0.01 or less than 0.1% change in \-" for successive

iterations

c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of these splines and are
not liz,ted

d. BF stands for basis function

This portion of the study demonstrates the strengths and weaknesses of the

system very well. The results show how well the computer program can fit the

tail of the planckian spectrum. This is due to the fact the fit between the last

two knots in the cubic spline is defined as a planckian distribution. Secondly, the

results demonstrate how the selection and quantity of knots effects the unfolded

spectrum (i.e. the use of six or seven knots is not acceptable but the use of eight

knots is acceptable.).

Finally, case PC3 depicts the artifacts that can be added to the unfolded
-/

spectrum as a result of the unfolding. This case is plotted in Figures 7 and 8.

The final point to note is the negative coefficients. These negative coefficients are
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acceptable since the non-negativity constraint was imposed. This demonstrates

the fact the computer treats the basis functions as merely mathematical functions

and tries to add or subtract them as required.
°'N.

The second "actual" spectrum studied was composed of cubic spline basis -

functions using seven kr,. '.s. iZhe spectrum was approximated using one, two, and

three planckian basis functions for the unfolded spectrum. The results of the

study are presented in Table X and the best approximation to the actual spec-

trum is depicted by Figures 9 and 10. All plots of actual and unfolded spectra

verses energy are presented in Appendix F.

The results of this study indicate that as the number of planckian basis func- S

tions is increased, the value for x is reduced. From the results, there appears to

be an optimum number of knots that should be used to fit a given spectrum.

However as seen from cases CP3 and CP4, the addition of another basis function S

may not improve the approximation of the actual spectrum. Also note the nega-

tive temperatures which have no physical meaning. However, the computer code

is once again treating the basis functions strictly as mathematical functions and in

this case the overall function may be negative. In order to require a positive tern- -.

perature, a simple restraint on the temperatures in the computer code could be

inserted, although this would result in a poorer agreement with the measurements.

Figure of Merit

In order to evaluate how well the actual spectrum was approximated by the
S

unfolded spectrum, a study of eight figures of merit was conducted. This study is

presented in Appendix G. The goal of the study was to determine a figure of

merit that correlated with x. Thus, an experimenter would have a reasonable

idea of the goodeness of fit for the unfolded spectrum. However, the eight figures

of merit studied do not appear to correlate well with v, The main reason for the

figures of merit not correlating with X was the calculation of the functions. X2

5-16 8
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%, TABLE DC
Results of Fitting A Cubic Spline Spectrum

With Planckian Basis Functions (a,b)
Case Parameters

Knots Coefficients T
Actual(c) 5.0 10.0 25.0 50.0 4.0 5.0 3.0 1.8 1.0 10.0

BFI1(d) BF2 Be3 BMfX

a T a T a T a T-. CP1 Initial 3.0 2.0

'jUnfolded 67.0 2.5 380.0
i',CP2 Initial 3.0 2.0 4.0 6.0

<-,,: Unfolded 43.0 1.8 78.0 9.9 120.0
... CP3 Initial 3.0 2.0 4.0 6.0 2.0 8.0

" Unfolded 39.0 1.5 40.0 7.0 39.0 12.0 17.0
CP4 Initial 3.0 2.0 4.0 6.0 2.0 8.0 1.0 3.0

,,,.Unfolded 36.0 -1.3 40.0 7.0 40.0 12.0 38.0 1.4 17.0

.. a. 0.15

, b. Convergence criteria: )(2< 0.01 or less than 0.117 change in X2 for successive
iterations

-. c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of this spline and areWnot listed BF stands for basis function

"'-"was calculated based on the difference of the signals and thus was weighted more

heavily at the low energies while the figures of merit were based on spectral values

and received equal weight since the energy bins were equal. Thus, a good T,

"-'" would not correspond to a good figure of merit because a small difference in theratios for the last detector would cause a large error in the figure of merits since

the error would be spread over energies from 64E, to 128E .

5-19
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VI. Summary and Conclusions

Summary

Validation Cases. The purpose of the validation cases was to ensure each

element of the computer code was functioning properly and to note any flaws.

-. The three validation cases presented do exactly that. The benchmark cases for

the planckians and the cubic spline basis function with fixed knots demonstrate

the power of this unfolding technique. These cases show how well an actual spec-

trum can be approximated if the type of basis function used to construct the

unfolded spectrum is the best possible basis function and no measurement error,

,. ,either real or simulated, is present. In other words, if an optimum basis function

can be determined, the computer program is outstanding.

The cubic spline validation cases also demonstrate the dependence of the
4.. -

unfolded spectrum on the initial guess at the knot locations. Even with a poor

o '*. choice for the initial knot locations, the method will attempt to unfold the actual

spectrum. However, in general the variations in the knots will be so small as to

require an unacceptable amount of computer time before the actual spectrum is

unfolded. Thus, it is recommended that the predicted spectrum be used to deter-

mine the optimum knots for the initial guess at the unfolded spectrum. However.

this does not guarantee the best unfold with the real data so the unfold may have

to be repeated using different of knot locations

Test Cases. The test cases demonstrated that error in the measured qig-

nals (simulated measurement error in the b,'s in this study) prevent the "exact"

actual spectrum from being unfolded. However, the general shape of the actual

spectrum was unfolded in all cases. The test cases also demonstrated the artifacts

introduced in the unfolded spectrum when attempting to approximate an actual

"" " spectrum that is not composed of the same set of basis functions as the unfolded

spectrum. Thus, an experimenter can not unfold the actual spectrum but only an

..
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"'" ~4 approximation to the actual spectrum and this unfolded spectrum will vary

depending on the error in the data and the type of basis functions used. However,

the general shape of the actual spectrum is returned

Conclusions

The results obtained from the test cases and validation cases demonstrated

the following conclusions.
WV

1. The final convergence and the rate of convergence of the unfold using

. cubic splines is dependent on the knot locations.

2. The cubic spline basis functions or local basis functions yielded a lower 4

x2 than the planckian or global basis functions did when used to unfold

data with simulated measurement error.

3. The total fluence of the spectrum is more accurate than the spectrum.

• 4. The shape of the spectrum is definable but the exact spectrum can not

be unfolded.

5. The temperatures in the multi-temperature planckians do not represent

the actual temperatures of the planckians.

8. The type of basis functions used will have a direct affect on the details

one can unfold and on the artifacts added to the unfold spectra.

In addition, the validation cases and test cases studied demonstrate the use-

fulness of this data analysis method. The data analysis method be used in the

following ways.

1. During the experimental planning phase, the computer program could be

used to determine the best detector locations and response functions in
-'.

order to achieve a reasonable unfold- and to optimize the number of

detectors or channels in order to confirm the predicted spectrum or to

determine variations from the predicted spectrum.

6-2
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2. After the ideal detector locations are selected and the response functions

are determined, the computer program can be used to evaluate the affect

of various basis functions on the unfold and the affect of measurement

error on the unfold.

3. The computer program can then be used to unfold the real data.

4. Finally, an analysis of the propagation of erro can be conducted using

the computer program in order to get uncertainty bounds for the

unfolded spectrum and to determine the limitations of the unfold.

In order to convert Decon7.f to handle actual data as discussed above, four

read statements would have to be inserted. These read statement would read the
response functions, the predicted signals, the measured-to-predicted ratios, and the

standard deviations of the measured-to predicted ratios. Thus, the computer code

is capable of simulating test procedures or with three simple modifications, pro-

cessing actual data.

G- 3
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'1 ~ VU. Recommendations

Recommendations

The following recommendations are made for continued study in this area.

First, the simulated measurement error study should be continued in order to

determine if the simulated measurement error has a more dramatic effect on any

particular detector or detectors. In addition, this study could consider the possi-

bility of one or more detectors failing and see how this failure effects the unfolded

spectrum.

Secondly, the study should be continued to see how well the planckian and

cubic spline basis functions can approximate other spectra. This study could also

0 be used to determine if the artifacts produced correspond to the k-edges or energy

ranges of certain detectors.

%-

The third area of study could be amore detailed study of the relation of~

to a given figure of merit. This study could be conducted in conjunction with a

study to determine the error or uncertainty in the unfolded spectrum. This error

analysis should include the methodology used in the deconvolution process as well

as the error established in measuring the actual spectrum.

The fourth area that could be studied is the effect on the unfolded spectrum

of varying the number of detectors used and/or their locations. These effects

could be studied using various basis functions. Formulation, implementation, and

evaluation of new and varied types of basis functions is a firth area for duture

work.

Finally, a study could be conducted to determine how well the deconvolution

process can resolve specific details in the actual spectrum. By selecting an actual

spectrum and then adding a known function and varying its amplitude and

o width, a test procedure could be constructed to evaluate the rcsolving power of

the deconvolution method. J

'7-1
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Appendix A: Derivation of the Response Functions

Before the methodology used to develop the program could be implemented,

typical response functions for the detectors had to be derived. In detecting pulsed

x-ray radiation, a common technique uses a filter-fluorescer detection system. In

principle, this system uses the k-edges of the filter and fluorescer to determine the

inband response of the detector. This type of detection system was selected for

the closed response function detectors. The open response function detectors used

the same system without the filter.

The equation used to derive these response functions is (15)(4"244):

Jk(E,O)d~dE =J(E)rk(E)CAk L (Jc~ ](5I LSE)]
IV. E2  1 [1-exp(-u, (E)d)

cos cos(7r-0)

where

J,(E,O) = the intensity of the K series excited bv

radiation having an energy ranging from E to

E+dE

dn a solid angle

k(E) = the coefficient of photoabsorption on the k

shell

_. = the fluorescent yield

I = the probability ofthe appearance of the

fluorescence quantum having an energyE,

d = the foil thickness

p(E) = reduction coefficient of the exciting

radiation ( considered mass attenuation

coefficient)

A-1
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The constant and c(d) have been dropped due to the normalization of the

predicted signal and the subsequent modification of the response function. Also

note that the energy must be greater than the k-edge of the fluorescer in order for

the fluorescence to occur.

* The addition of a filter to this open response function detector only serves to

attenuate the arriving radiation. Thus Equation (19) becomes:

I .

111-x (.J]{xpE<EE

i- R(E)E)--xp - (20)""

note t at th energy,, - ns b e fra e th I he p 7ng or teO fl oe sce r n o d e o

EE< E E

where

n = constant

m = constant

r = ratio of mass attenuation coefficient values at

k-edge

E= k-edge of filter

By conducting a study of mass attenuation coefficients, r was determined to

range from 4 to 12. For this study a value of 6 was selected. Secondly, a resolv-

il:g power of about 1.5 could be achieved if the E' is twice the value of E) fo r the

detection system. This also established the limits for theinband response func-

tOi ILS.

Finally, a parameter study was conducted to ensure at least 70% of the sig-

nal would be inband and that this signal would still be strong enough to be

detectable over the other noise, such as scattered radiation, in the detection sys-

S.- tem. Based on the parameter study, the value of the constants was selected as

follows: g 3.0; n = 2.0. With a value of 2.0 for n, and E I- 2E ° , m - 0.25
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1/8 of n. With these values the open and closed inband response is 80% and
4.

78% respectively and the total response is acceptable.

4.

-'V
'p

-p

VP -V

-p

6

'p

'p
'V.

V..

'~6

6

-p.

A- 4

- . -- V.. -- -- - - - I



Appendix B: Derivation of the Cubic Spline
Basis Functions

The cubic splines used in this study were four point Lagrangian interpolating

splines and not the common B-spline. These cubic spline basis functions were a

combination of four cubic splines. Also, a linear functions or a planckian function

were required in certain segments of the spectrum. The lagrangian interpolating

splines were a function of the knot locations chosen to construct the splines and

the spectral intensity at these knots. In this study, the intensity was referred to

as the expansion coefficient for the spline formed using that knot. The study

required three fixed knots.The first knot is equal to 0.0; the second knot is equal

to E? and the last knot is equal to 128.0*E?. Also, a minimum of six knots is

required before a full cubic section is defined by the basis functions.

The number of basis functions is equal to the total number of knots minus

one. Each knot location except the first and last knot location Is used to define a

specific bas:is function. Additionally, the next to last knot's spectral value is used

to define two basis functions. This appendix will present the methodology used to

develop the various basis functions.

The primary function us(d to define the ba-sis fNu ctin waks the ,ubic spline

* finction given by Equation (21)(2:S.5).

4 (E -knot, )u:
L 4 k(E) = , (E-lot) (21)

.'-p

E t'rirgy

knotk primary knot

knot = ()thcr kn(ts in the function

In this studly, four functions, L 4 k (E)'s. were used to define the basis function

* for the primary knot locations. This basis function covered a range from the

R-I
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energy of two knots to the left of the primary knot location up to two knots to

the right of the primary knot. In other words if the given knot is knot(x), the

energy range covered from knot(x-2) to knot(x+2). Figure 11 depicts the forma-

tion of a cubic spline basis function using the four L 4 k(E) 's described by Equa-

tion (21) and expanded in Equations (22) to (25).

f (1) = (z-Xl)(z-x2)(x-x3) } 2<z<z3
(x4-xl)(z4-x2)(z4-3)

f (2) (x - x 2 )(z 4-z 3)(z -5) 3x<4
(z-x31)(x-xS)(x--x6)

/(3)= (x4-x3)(z4-z5)(x4--z6)

0 f(4) = (x-z5)(z -X6)(X - 7) --

(x4-x5)(x4-x6)(x4-x7)

The solid line portions of each of the four L 4 ,k functions depicted in Figure

ll(a to d) are added to form the final cubic basis function depicted in Figure lie.

-cuic spline basis function is formed in the same manner for each knot location

unless the function is modified as discussed below.

Thr,(: modifications were made to these cubic functions. First, the detectors

are unable to dctect energy below E? or above 128*E? . Thus, these values were

not computed in the basis functions used to define the unfolded spectrum.

Secondly, four complete cubits can not be evaluated between the next to last knot

and the last knot. Thus, a planckian fit, as given by Equation (6), was used in

this section. Also, four complete cubics could not be calculated from knot two to

knot three or after the planckian modification, from two knots from the end to

one knot before the end. In order to allow all other sections to be fit as cubics

and to correct the-e two sections, a linear fit was used.

R- 2

- 4' - . ° • • .



r

9 r
.9

I-

9 F
F

.~ .,. ~--~ *..% F

F
9
9

.9 .4

.9
9
9 a b

-p

/
I

I
- -t 1 8 I 8

9

.9

* c

I

II

~, KIL ~ - j
K.4, ~~s4 ~ A~ A. K., ~ 4 K7

4.

e
4.

.9.
-9

-. 4

4-

V.. V 4..

I 4-

4*.

.4

Figure 11. Development of the Cubic Spline Basis Function

.4

.................................................



4.1

S.r.~*-., In order to visualize these modifications, Figure 12 depicts the five basis func-

tions used for the case consisting of six knots. The basis functions cover the fol-

lowing knot locations: basis function 1, 1.0 to 50.0; basis function 2, 1.0 to 50.0;

basis function 3, 10.0 to 80.0; basis function4, 10.0 to 80.0; and basis function 5,

80.0 to 128.0. Note the error in the functions at knot5. This is due to the step

" size used to produce the figure. By using a smaller step size to calculate the basis

functions, a smooth set of basis functions can be produced at this last knot.

Table X presents the basis functions used and the knots and type of func-

tions used to define the basis functions.

..-
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TABLE X

- Knots and Functions Used to Define the
Cubic Spline Basis Functions(a,b)

Basis Primary Energy Knots Type
Function Knot(c) Range(d) Used Function
1 2 2-3 2,3 linear

3-4 2,3,4,5 cubic
2 3 2-3 2,3 linear

3-4 2,3,4,5 cubic
4-5 3,4,5,6 cubic3 4 3-4 2,3,4,5 cubic

4-5 3,4,5,6 cubic
5-6 4,5,6,7 cubic

4(e) 5 3-4 2,3,4,5 cubic
4-5 3,4,5,6 cubic
5-6 4,5,6,7 cubic
6-7 5,6,7,8 cubic

N-3 N-2 N-2 N-i N-3,N-2,N-1,N cubic
N-3 (N-2) N-4,N-3,N-2,N-1 cubic
N-4 (N-3) N-5,N-4,N-3,N-2 cubic

N-2 N-1 N-1 N N-1,N linear
N-2 (N-i) N-3,N-2,N-1,N cubic
N-3 (N-2) N-4,N-3,N-2,N-1 cubic

N-1 N N-1 N N-1,N linear
N-2 (N-i) N-3,N-2,N-1,N cubic

N N N-N+1 N-1 planckian

a. N equals the number knots minus 1

b. If less than eight knots are used, the basis functions must be modified to en-
sure only a linear fit is used between knots 2 and 3 and knots N and N-i.

c. Primary knot value is equal to one in all cases. All other knots are equal to
zero. Basis function is then expanded using the expansion coefficient for the
primary knot.

d. Energy Range is considered as energies from knot to kijot
e. Also used for basis functions 5 to N-4 with primary kuot equal to basis func-

tion plus one.

B-6
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Appendix C: Computer Program Documentation

Prose

Decon7.F is a fortran 77 computer program that is written off the UNIX

ELXSI BSD (4.2) operating system. The computer program is currently available

on the ICC computer system at the Air Force Institute of Technology. Decon7.f

is a computer program that can be used to approximate the actual radiation spec-

truni in the Fredholm integral equation. Decon7.f can also test various types of

basis functions for defining the unfolded spectrum. With minor modification, the

response functions or number of detectors utilized in the unfolded process can also

be changed. This allows the program to be used to study the effect of the detec-

tors and the type of response function on the unfolding process. The methodology

used to develop this program is discussed in detail in Section III.

- The program is based on three main assumptions. First, the energy range

considered is from E ° to 128E?. Secondly if the actual and predicted are defined

by the computer program vice being input, the program assumes the calibrated

and actual response functions are equal. Finally, decon7.f assumes 20 detectors

are utilized to measure the spectra.

Currently, the program is limited to planckian and cubic spline basis func-

tions for defining the unfolded spectrum. However, a new basis function subrou-

tine can easily be inserted for defining the unfolded spectrum. Also, since the

function is non-linear, the possibility exists for the computer program to begin to

loop between certain values of X2. This could be corrected by either adding a

maximum number of iterations allowed or by stopping the computer program and

then restarting the program with a higher convergence criteria for \2.

Decon7.f is run by compiling and then executing the source code. Decon7 will

then prompt the user for all input required and list all options available.

C-I



Pseudo Code for Main Program

Input e •

Input energy bin width for calculating integrals.

Define E,0 and E,1 for all detectors with respect to E0.

Calculate response functions using Equations (3) and (4).

Input type of predicted spectrum to be used. (planckian, cubic or other.)

If planckian, then
S

Input number of basis functions

Input coefficient and temp. for each basis function

Calculate predicted spectrum by calling bbfunc

End if

If cubic then

Input the number of knots 5

Input knot locations

Input expansion coefficients

Input the planckian temperature

Calculate predicted spectrum by calling csfunc

End if

If other then

Read predicted spectrum from input file

End if

Calculate , using Equation (8)

Divide R, (E) by YP to normalize Y,P

C-2
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Define the actual spectrum (use the same method as defining the predicted

method).

Calculate bi using Equation (10)

Input oa for all detectors

Option to add normal noise distribution to b,.. (Input 1 for yes)

If yes then

Input seed number for random number generator

Calculate Z, using Equation (14).

Add Zito b,

End if

Option for flux non-negativity constraint (Input 1 for yes)

Input type of basis function to define the unfolded spectrum (planckian or

* •cubic)

If planckian then

Input the number of basis functions

Input the coefficient and temperature for each basis function

End if

If cubic then

Input the number of knots

Input the knot locations

Input the expansion coefficients

Input the planckian temperature

End if

Initialize the H matrix for the Fletcher-Powell method to the identity matrix.

- C-3
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Input the initial guess at the functional lower bound

Calculate the unfolded spectrum by calling bbfunc or csfunc

Calculate ci using Equation (11) V

Calculate V.) using Equation (12)

While X7"> convergence criteria

Call minimize

Recalculate X2

Print iteration #, \), and parameters to screen

End while

If \< convergence criteria

Write actual and unfolded spectrum into an output file

End if

End of main program

Pseudo Code for Subroutine bbfunc

Calculate spectrum using equation (6) and apply flux non-negativity options "

if applicable

lc-turn spectrum values to calling moJule.

Pseudo Code for Subroutine csfunc

Calculate spectrum using cubic splines in Appendix B and apply flux non-
n(:gativity option if applicable.

Return spectrum values to calling module. flux

I.-
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Pseudo Code for Subroutine minimize (5:75-76)
For p=l to np

Call gradient c,

" Calculate gradient of X2

Next p

Multiply gradient matrix by H matrix to find search direction

Normalize search direction to find unit search direction

Call subroutine linesearch

Reset 11 matrix to identity matrix if slope of x > 0.0 and recalculate search

direction.

Calculate new parameters for unfolded spectra

Calculate new 11 matrix

. 4• <Call bbfunc or esfunc to calculate new spectrum based on new parar et rs

Calculate pc, for new parameters using equation (11)

Let pc, =c,

Return new parameter and c, to main program,

Pseudo Code for Subroutine linesearch (5:77-SO)

Calculate functional value (ho) and slope (mo) with given parameters

If slope > 0.0

Return and reset II matrix

End if

Calculate t2

Calculate functional value (h2) and slope (m2) using parameter + t2 * unit

'€ search direction.

C-5
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lf m2>O.0

Use the two slopes and functional values previously calculated to fit a

cubic and determine the line search distance

End if

If mn2 < 0.0 and h2 > hO

C'ut the search interval in half and recalculate m2. h2

E nd if

If m2 =0.0 and h2 < ho

Line search distance equals t2.

Endl if

* If mi2 < (0.0 and h~2 < hO

IDouble search dlistance and le-t mO m2, hio h2, tO t2

IRc-lculate mi2 and h~2

* If mn2 =0.0 and hO h 12 (modification to reference)

l-ne s 'irch distance equals to

* Retturn line search distance to minimnize subroutine

Pseudo Code for Subroutine calcfunc

(ialculate new parameters

(tpararneter =parameter + t* unit search direction)

('all bhfunc or csfunc to determine spectrum values

Calculate c, based on new parameters, using equation (I11)

Calculate X') using equation (12).

C-6



For p =1,np

Call gradient c,

Calculate gradient of ~2

Next p

For p =1,np

slope =slope + gradient X- unit search direction

Nex t p

Return slope and function value, VJ, to linesearch subroutine

Pseudo code for Subroutine gradientc

Let parameter =parameter + delta* parameter with respect to the givfen

parameter

('all l,Vunc or c furic to let erminne n(,% sport rum values

~ 0Calculate new c' let it equal J~using equation (11)

('alculat- gradlient c, utsing c, and f

Return the value for the gradient of c

Source Code for Decon7.f

Se Appenidix D

List of Variables used in the Source Code

See tab I to this appendix

Inputs

Inputs required for Decon 7.f are listed in Table Ml.
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TABLE XI
List of Input Variables

Var. Definition
E 0 k-edge of fluorescor for 1st detector
y energy bin width for calculating integrals
type* type of basis function used to define predicted

spectrum
duml* # of planckian basis functions; number of knots

for cubic; or stop feature for reading input
file

pparam(j) coefficient and temperatures for planckian
basis function; or knots, expansion
coefficients and temperature for cubic

duml toggle for simulated measurement error
dum2 seed for random number generator
non toggle for non-negativity option
type type of basis function used to define the

unfolded spectrum
Cr standard deviation for b,
nj number of planckian basis functions
nkn number of knots for cubic basis function
param(j) coefficients and temperatures for each

planckian basis function or knots,
expansion coefficient and temperature for
cubic basis function

I initial guess at the functional lower bound.
4 also required for the actual spectrum

Outputs

The output occurs in two forms. First, the values f)r k and all paramlttt, ..

t!, printe,1 t) the c(lDi p~uter scre(n during each iteration a are t h, ,froal param(-

tcrsi. Secondlly. the actual spectrum and unfolded spectrum valucs at each ener~k -\

location are printed into an output file labeled output.

File Structure

The lrogram uses one output file and can use txo input files. In order to

run the program both input files must be defined. However, the two input files

may be empty ir they are not required to define the actual or predicted spectrum.

The file structure for the output file is a two column table with energy and inten-

sity at that specific energy. The first half of the file contains the actual spectrum.

These energies begin with the maximum energy' 128E Y and decreae in steps

C-8
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*. of the bin width (y) to a value of E?+Y- The second half of the file consists of

die unfolded spectrum and begins with energy, E 0 +1~ and increases in steps of y-

to the maximum energy-. The file structure for both input files consist of a single

column of energy- Intensities for energies from E? I+! to the maximum energy, in

stfrys of *thle bin wkidth.

Validation Cases

See Sections Vand NI.

Test Cases

Ct 'i d %'I
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Tab 1: List of Variables (a)

• Variable Symbol Definition Modules(b)
in code in Text
a -- dummy matrix used to calculate H 4
aknotl -- knot 0.0 for actual spectrum I
aknotl -- knot Eo(l) for actual spectrum 1
aknotl5 -- knot 12SEo(1) for actual spectrum 1
apararn(j) -- jth parameter for actual spectrum 1
b(i) b, measured-to-predicted ratio 1,4,5.6
c(i) c, unfolded-to-predicted ratio 1,.
c(i) -- c(i) for appropriate spectrum 7
chi2 chi squared 1
coef(p) -- expansion coefficient knot p-I 3
const -- expansion coefficient for planckian 3
const -- dummy variable for summing I

random numbers
d(i) d, integral of Ri(E) Sp(E) dE 1
delta -- step size to calculate gradient 7
dum -- dummy variable 3
dum1 -- dummy variable I
dum1 -- dummy variable 5
duii 1 .dui2 -- dummy variables I
dum3 -- 0 change inx2  1
dummy - dummy variable 1
e E energy counter 1.2.3
eo(i) E1°  k-edge of fluorescer for 1.2.3.

ith detector -,5.6,7
el(i)E, k-edge of filter for ith detector 1
f(p) -- c(i) for newpar(p) 7
, p) -- gradient of \ ior old parameters 4

r i m (  -- gradient X2 for new parameters I
gradc -- gradient of c(i) for appropriate spectrui1 7
gradc(p,) -- gradient c(i) with respect to paramtter 1 -1
grat p -- gradient of tc(p) 6
grchJ2' p -- gradient of V for tparam 6
grch'i2, -- gradient \ with respect to parameter p 1
h -- correction matrix 11 1.1.5
ho -- functional value at (Param5to'K 5
lit -- dummy functional value variable 5.6
h2 -- functional value at (Param- -t2*s) 5

-- counter 1.1.6,7
it -- iteration counter 1

-- counter 1.2,3.4
k -- counter 1.2.3.

4.6.7
kc planckian conversion 1.2.3.

constant (temp. to energy) .15,6,7
kn()-- knot numter p 3
kn('15) - dummy variable for knot location 4
knot 1 -- knot 0.0, unfolded spectrum 1.3.1.

5,6,7
knot2 -- knot Eo(1), unfolded 1.3,4,

spectrum 5,6,.7

C-i-I
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Variable Symbol Definition Modules(b)
in code in Text -
knotl5 -- knot 128Eo(1), unfolded 1,3,4,

spectrum 5,6,7
-- functional lower bound 1,4,5

m -- dummy slope variable 5,6
mo - slope at (param + to*s) 5
mu - variable for cubic fit 5
m2 - slope at (param + t2*s) 5
newpar(p) - param(p) + (delta)*(param(p)) 7
ni - number of detectors 1,4,5,

6,7
nj - number of planckian basis functions 1,2,4,
nk - number of energies 1,2,3,

4,5,6,7
nkn number of knots unfolded 1,3,4,

spectrum 5,6,7
np number of parameters 1,4,5,

6,7
non toggle for flux non-negativity 1,2,3

option 4.5,6,7
norms -- norm of sprime 4
num -- dummy variable 3

-- counter 1,4
p -- counter 1,4,6,7
param(j) -- jth parameter for unfolded 1,2,3,

spectrum 4,5,6,7
pc(i) c(i) for new parameters 4p! rc p 1.2 ,3 , -.

4.5.6,7
pknot1 -- knot 0.0 for predicted spectrum 1
pknot2 -- knot Eo(1) for predicted spectrum 1
pknotl5 -- knot 128Eo(1) for predicted spectrum 1
planck -- planckian distribution 3
pparam(j) -- jth parameters for predicated spectrum I
pprime(p) -- new parameter 4-
q -- dummy matrix used to calculate H 4
r(ik) R, (E) response function of ith 1.4,5,

detector kth energy 6,7
rand -- random number generator I
reset -- reset counter for H matrix 4,5
s(p) -- unit normal search 4,5,6

direction for parameter p
sa(k) Sa(E) actual spectrum kth energy 1
sig -- dummy input for O 1
sigma(i) a, standard deviation in b, 1,4,5,6
slope - slope for linear fit 3
sp(k) Sp (E) predicted spectrum kth energy 1
sprime(p) - search direction for parameter p 4
srand - initializes random number generator 1

S,, (E) unfolded spectrum kth energy 1,2,3
-II k) - dummy variable unfolded spectrum 4

.: k) -- unfolded spectrum for tparamp) 6
Sk - unfolded spectrum for newpar(p) 7

C-1-2
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Variable Symbol Definition Modules(b)
in code in Text

:':' sumi - dummy variable 4
sum dummy variable 4
sumk - dummy variable 4
sumo - dummy variable 4
sump - dummy variable 4
sumran -- sum of random numbers 1
t - temperature of planckian 3
t -- step size in search direction 4,5,6
tc(p) -- c(i) for tparam(p) 6
to - step size used to determine ho,mo 5
tparam(p) -- parameter(p) +t*s 6
type -- type of basis function 1,4,5,

6,7
tl -- calculated step size 5
t2 - step size used to determine h2,m2 5
v -- dummy matrix used to calculate H 4
w -- variable for cubic fit 5
x -- dummy variable 1,2,3
x -- parameter transfer counter 7
y -- energy bin width 1,2,3,

4.5,6,7
z - dummy matrix used to calculate H 4
z - variable for cubic fit 5

a. If a parameter is listed once for several modules, the parameter is passed
between the modules. If the parameter is listed separately for each module,j the parameter is only common to that module.

b. Module listing: 1, .Main; 2, bbfunc; 3, csfunc; 4, minimize; 5, linsearch; 6,
calcfunc; 7. gradientc

4'"i
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Appendix D: Computer Program Source Code

c THIS PROGRAM IS THE FINAL VERSION OF DECON. IT USES
c THE FLETCHER-POWELL METHOD FOR MINIMIZING CHI2 WHILE
c USING A CUBIC LINE SEARCH ROUTINE. ALL INPUTS ARE
c REQUIRED TO BE INPUT FROM THE KEYBOARD. THE CUBIC
c BASIS FUNCTIONS INCLUDE THE KNOTS AS PARAMETERS.
c THIS PROGRAM USES NUMERICAL DECONVOLUTION TO
c APPROXIMATE AN ACTUAL RADIATION SPECTRUM WHEN GIVEN THE
c MEASURED SIGNAL, A PREDICTED SPECTRUM, AND RESPONSE
c FUNCTION OF THE DETECTOR(S). THE PROGRAM ASSUMES
c 13 CLOSED RESPONSE DETECTORS AND 7 OPEN RESPONSE
c DETECTORS. THE PROGRAM USES AN ENERGY RANGE OF Eo( 1)
c TO 128*Eo(i)

real*8 pparam(30),pknotl,pknot2, pknotl5,aparam(30)
real*8 aknotl,aknot2,aknotl5
real*8 chi2,eo(20),el(20),r(20,1280),e,pi,kc V
real*8 sa(1280),sp(1280),d(20),b(20),sigma(20)
real*8 sumran,sig,dum3,dummy,x,su(1280)
real*8 l,param(30),c(20),y,h(30,30)
real*8 knotl,knot2,knotl5,srand,rand,const
integer nkn,type,it,non,i,k,J,ni,nk,nJ,duml,dum2,o,p,np
common eo( 20)
open (unit-7,file-'output',status-'new')
open (unit-2,file-'inputl',status-'old')
open (unit-3,file-input2',status-'old')
rewind (2)
rewind (3)
print *,'INPUT EO(1)'
read *,eo(1)

c NI-THE NUMBER OF INSTRUMENTS OR DETECTORS
c NK-THE NUMBER OF ENERGY BINS USED FOR INTEGRATION
c Y-THE WIDTH OF THE ENERGY BIN

ni-20
print *, 'INPUT THE DESIRED ENERGY BIN WIDTH, MINIMUM'
print 'BIN WIDTH IS 0.1'
read *,y
nk=int( ( 128.0*eo( 1 )-eo( 1) )/y)
pi=3.1415
kc-1.0

c DEFINE ALL EO'S WITH RESPECT TO EO(1)
do 5 i-2,7

eo( I )-2.0*eo( i-i)
5 continue

eo( 8 )-Il. 5*eo( 1)
do 10 1-9,13

eo( i )-2*eo( i-i)
10 continue

do 15 1-14,20
eo( 1 )-eo( i-13)

, 15 continue
D.1
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c DEFINE El(I)WITH RESPECT TO EO(I)
do 20 i-1,ni -

el( i)-2.O*eo( i)

conEFINEAL RESPONSE FUNCTIONS AT SPECIFIED ENERGIES
do 30 i1l,ni

e-eo(l1)-y/2.0
do 25 k-l,nk

eme+y
if (e.gt.eo(i)) then

if (i.lt.13) then
if (e.lt.el(i)) then
r( i,k )-( 1.0/e )*( 1 .- exp( -2.O*( eo( I)/e )**3))
r( i,k)-r( i,k)*exp(-0.25*(el( i)/e)**3)

else
r(i,k)-(1.0/e)*(1.0-exp(-2.0*(eo(i)/e)**3))
r( i~k)-r( i,k)*exp(-1.5*(el( i)/e)**3)

end if '
else
r(i,k)-(1.0/e)*(l.O-exp(-3.0*(eo(i)/e)**3))

end if
else

r( i,k)-0.0
end if

25 continue
30 continue

c DEFINE THE PREDICTED SPECTRUM
print *,'INPUT THE TYPE OF FUNCTION TO BE USED TO MODEL
print *,'THE PREDICTED SPECTRUM'
print *,-lPLANCKIAN BLACK BODIES'
print *' 2-CUBIC SPLINES'
print *'3-OTHERI

read *,type
if (type.eq.1) then
print *,*INPUT THE NUMBER OF PLANCKIAN BASIS'
print *,'FUNCTIONS TO USE*
print *,'(MUST BE AN INTEGER LESS THAN 15)'
read *,duml
print *,'INPUT THE COEF. AND TEMP. FOR EACH BASIS'
print *,'FUNCTION SEPERATED BY A COMMA (TEMP IS IN'
print 'UNITS OF EO(1))6
do 33 11l,duml

print *,'BASIS FUNCTION NUMBER'~j
read *,pparam( j),pparam( j+duzul)

33 continue
non-i *0
call bbfunc(pparam,sp,y,nk,duml,pi,kc,non)

end if
if (type.eq.2) then
print *,'INPUT THE NUMBER OF KNOTS TO BE USED TO FIT'
print *,'THE CUBIC SPLINES (MUST BE AN INTEGER'

.- ~ print *,'6(-#KNOTS<-15) NOTE:0.0'
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print *,'IS COMPUTED AS THE FIRST KNOT, EO(1) IS'
print *,'COMPUTED AS KNOT 2, AND 128.0*EO(l) IS'
print *,'COMPUTED AS THE LAST KNOT. INCLUDE THESE'
print *,'KNOTS WHEN COUNTING YOUR KNOTS,AND ENSURE'
print *,'THE KNOTS ARE INPUT FROM THE MINIMUM TO THE'
print *, MAXIMUM.'
read *,duml
print *,'INPUT THE KNOTS'
pknotl-0.0
print *,'KNOT 1-',pknotl
pknot2-eo(l)
print *,'KNOT 2-',pknot2
do 37 J-l,duml-3
print *,'input knot ',J+2
read *,pparam(J)

, 37 continue
pknotl5-128.0*eo( 1)
print *,'KNOT',duml,1m',pknotl5
do 38 J-l,duml-2

if (J.ne.l) then
print *,'INPUT THE EXPANSION COEF. FOR'
print *,' KNOT-',pparam(j-l)

else
print *,'INPUT THE EXPANSION COEF. FOR'
print *,' KNOT-',pknot2

end if
read *,pparam(duml-3+j)

38 continue
print *,'INPUT THE TEMP. TO BE USED TO CONSTRUCT A'
print *,'PLANCKIAN FIT BETWEEN THE LAST 2 KNOTS,'
print *,' TEMP IS IN UNITS OF Eo'
read *,pparam(2*duml-4)
non-i .0
call csfunc(pparam,sp,duml,nk,y,non,pknotl,
pknot2,pknotl5,eo,pi,kc)

end if
if (type.eq.3) then
print *,'Sp(E) WILL BE READ FROM FILE inputl, THE'
print *,'FILE SHOULD CONSIST OF SPECTRUM VALUES FROM'
print *,'(EO(1)+BIN WIDTH/2.0)'
print *,'TO 128.0*EO(l) IN STEPS OF THE BIN WIDTH'
print *,'INPUT A 1 TO CONTINUE OR A 2 TO STOP'
read *,duml
if (duml.eq.2) then
go to 151

end if
e-eo(l)-y/2.0
do 44 k-l,nk

e-e+y
read (2,*) sp(k)

44 continue
end if
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'!. .: ~c CALCULATE THE NORMALIZATION CONSTANT FOR D(I) AND
c RENORMALIZE THE RESPONSE FUNCTIONS

*do 55 i-l,ni
do 45 k-l,nk

d(i)-d(i)+sp(k)*r(i,k)*y
45 continuedo 50 k-l,nk

r( i,k )-r( i,k )/d( i
50 continue
55 continue

c DEFINE THE ACTUAL SPECTRUM
print *,'INPUT THE TYPE OF FUNCTION TO BE USED TO'
print *,'MODEL THE ACTUAL SPECTRUM'
print *,' 1-PLANCKIAN BLACK BODIES'
print *,' 2-CUBIC SPLINES'
print *,' 3-OTHER'
read *,type
if (type.eq.l) then
print *,'INPUT THE NUMBER OF PLANCKIAN BASIS'

* print *,'FUNCTIONS TO USE'
print *,'(MUST BE AN INTEGER LESS THAN 15)'
read *,duml
print *,'INPUT THE COEF. AND TEMP. FOR EACH BASIS'
print *,'FUNCTION SEPERATED BY A COMMA (TEMP IS IN'
print *, 'UNITS OF EO(1))'
do 59 J-l,duml
print *,'BASIS FUNCTION NUMBER',
read *,aparam( ),aparam(J+duml)

59 continue
non-i .0
call bbfunc(aparam,sa,y,nk,duml,pi,kc,non)

end if
if (type.eq.2) then
print *,'INPUT THE NUMBER OF KNOTS TO BE USED TO FIT'
print *,'THE CUBIC SPLINES (MUST BE AN INTEGER'

-' print *,'6<-#KNOTS<-15) NOTE:O.0'
print *,'IS COMPUTED AS THE FIRST KNOT, EO(l) IS'
print *,'COMPUTED AS KNOT 2, AND 128.0-E0(1) IS'
print *, 'COMPUTED AS THE LAST KNOT.'
print *,'INCLUDE THESE KNOTS IN THE COUNT OF YOUR'
print *,'KNOTS AND ENSURE THE KNOTS ARE INPUT FROM'

print *,'THE MINIMUM TO THE MAXIMUM'
read *,duml
print *,*INPUT THE KNOTS'
print *,'KNOT 1-0.0'

aknot 1-0.0
aknot2-eo(l1)

print *,'KNOT 2-',aknot2
do 62 J-l,duml-3
print *,'input knot ',J+2

read *,aparam( )
. -. ' 62 continue
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aknotl5-128.O*eo( 1)
print *,1KNOT9,duml+3,0in',aknotl5
do 63 J-l,duml-2

it (J.ne.1) then
print *,'INPUT THE EXPANSION COEF. FOR'
print *, 'KNOT-' ,aparam( i-i)

else
print *,'INPUT THE EXPANSION COEF. FOR'
print *, 'KNOT-' ,aknot2

end If
read *,aparam(duml-3+j)

63 continue
print *,*INPUT THE TEMP. TO BE USED TO CONSTRUCT A'
print *,'PLANCKIAN FIT BETWEEN THE LAST 2 KNOTS,'
print *,'TEMP IS IN UNITS OF Eo'
read *,aparam( duml*2-4)
non-1.u
call cstunc( aparam,sa,duml,nk,y,non,

*aknotl,aknot2,aknotl5,eo,pi,kc)

end if
if (type.eq.3) then
print *,'Sa(E) WILL BE READ FROM FILE input2, THE'
print *,'FILE SHOULD CONSIST OF SPECTRUM VALUES FROM'
print *,'(EO(l)+BIN WIDTH/2.0)1
print *,'TO 128.0*EO(1) IN STEPS OF THE BIN WIDTH'
print *,$INPUT A I TO CONTINUE OR A 2 TO STOP'
read *,duml
if (duml.eq.2) then

go to 151
end if
e-eo(l1)-y/2.0
do 69 k-ink
e-e+y
read (2,*) sa(k)

69 continue
end if

*c DEFINE A(I); RECALCULATE D(I) AND CALCULATE B(I)
do 75 i-l,ni

a( i)-0.0
d( i )0.0
b( i )0.0
do 70 k-l,nk

a( i )-a( i )+sa(k)*r( i,k)*y
d( i )-d( i )+sp(k)*r( i,k)*y

70 continue

75 continue

c DEFINE SIGMA(I) ii
5. print *,'INPUT SIGMA(I) ASSUMES ALL SIGMAS ARE EQUAL'

read *,Sig
do 80 i1l,ni

* sigma(i)-sig
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80 continue
print *,'DO YOU WISH TO APPLY A NORMAL/GAUSSAIN NOISE'
print *,'DISTRIBUTION TO B(I), INPUT A 1 FOR YES'
read *,duml
if (duml.eq.1) then
print *,'INPUT THE SEED FOR THE RANDOM NUMBER'
print *,'GENERATOR, MUST BE AN INTEGER'
read *,dum2
const-srand( dum2)
do 82 i-l,ni
sumran-0 .0
do 81 J-1,12
const=rand( x)
sumr an-s umr an+const

81 continue
z( i )-sigma( i )*(sumran-6.0)
b( i )-b( i )+z( i
print *,'noise-',z(i)
print *,'i=',i,'sumran-',sumran

82 continue
. end if

print *,'DO YOU WISH TO APPLY A NON-NEGATIVITY'
print *,'CONSTRAINT? INPUT 1 FOR YES'
read *,non
print *,'INPUT THE TYPE OF BASIS FUNCTION TO BE USED'
print *,'TO CALCUKARE THE UNFOLDED SPECTRUM'
print *,' 1=PLANCKIAN BLACK BODIES'
print *,' 2-CUBIC SPLINES'
read *,type
if (type.eq.1) then
print *,'INPUT THE NUMBER OF BASIS FUNCIONS TO BE'
print *,'USED (MUST BE AN INTEGER LESS THAN 15)'
read *,nj

c INPUT THE INITIAL GUESS AT THE PARAMETERS OF THE
c BASIS FUNCTIONS PROGRAM ASSUMES ONE COEFF. AND ONE
c PARAMETER (T) PER BASIS FUNCTION

np-2.0*nJ
do 95 J-l,nJ
print *,'INPUT THE INITIAL GUESS FOR A(J),J',J
read *,param(j)

95 continue
do 100 J-1,nJ
print *,'INPUT THE INITIAL GUESS FOR THE PARAMETER'
print *,'T(J),J-',J,'TEMP IS IN UNITS OF Eo'
read *,param(j+nJ)

100 continue
end if
if (type.eq.2) then
print *,'INPUT THE NUMBER OF KNOTS TO BE USED TO PIT'
print *,'THE CUBIC SPLINES (MUST BE AN INTEGER'

<print *,'6<*KNOTS(=15) NOTE:0.0'
print *,'IS COMPUTED AS THE FIRST KNOT, EO(1) IS'
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print *,'COMPUTED AS KNOT 2, AND 128.O*EO(1) IS'
~*~'print *,'COMPUTED AS THE LAST KNOT.'

print *,'INCLUDE THESE KNOTS IN THE COUNT OF YOUR'
print *,'KNOTS AND ENSURE THE KNOTS ARE INPUT FROM'
print *,'THE MINIMUM TO THE MAXIMUM'
read *,nkn
print *,'INPUT THE INITIAL GUESS AT THE KNOTS'
print *#*KNOT 1-0.0'
knot 1-0.0
knot2-eo( 1)
print *,'KNOT 2-',knot2
do 101 J-1,nkn-3

print *,*input knot ',J+2
read *,paran( J

101 continue
knot15-128.0*eo( 1)
print *,'KNOT',nkn,'-',knotl5
do 102 J-1,nkn-2

it (J.ne.1) then
print *,'INPUT THE EXPANSION COEF. FOR'

* print *, 'KNOT-' ,param( j-l)
else
print *,*INPUT THE EXPANSION COEF. FOR'
print *,'KNOT-',knot2

end if
read *,param(nkn-3+j )

I ~*102 continue
print *,'INPUT THE TEMP. TO BE USED TO CONSTRUCT A'
print *,'PLANCKIAN FIT BETWEEN THE LAST 2 KNOTS,'
print *,'TEMP IS IN UNITS OF Eo'
read *,param(nkn*2-4)
npunkn*2-4

end if
c INITIALIZE THE H MATRIX FOR THE MINIMIZATION TO THE
c UNITY MATRIX

do 110 pinl,np
do 105 o-1,np

if (o.eq.p) then
h( o,p )-1.0

else
h( o,p )-O.0

end if
105 continue
110 continue

c INPUT THE INITTAL GUESS AT THE FUNCTIONAL VALUE OF THE'
c LOWER BOUND

print *,'INPUT THE INITIAL GUESS AT THE FUNCTIONAL'
print *,'LOWER BOUND*
read *,1

c BEGIN THE APPROXIMATION OF THE TRUE SPECTRUM USING THE'
c UNFOLDED SPECTRUM FROM THE SUBROUTINES BBFUNC AND

U...-*:.c CSFUNC
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if (type.eq.l) then
call bbfunc(paramsu,y,nknj,pi,kc,non)

* end if
if (type.eq.2) then

call csfunc(param,su,nkn,nk,y,non,knotl
* ,knot2,knotl5,eo,pi,kc)
end If

c CALCULATE C(I)
do 115 i-l,ni

c(i)-0.0
do 111 k-l,nk

c(i)=c(i)+su(k)*r(i,k)*y
111 continue
115 continue
118 continue

c CALCULATE CHI SQUARED
dummy-chi2
chi2-0.0
do 120 i-l,ni

* chi2fchi2+((c(i)-b(i))/sigma(i))**2
120 continue

print *,'it-',it,'chi2-1,chi2
dum3-abs( ( dummy-chi2 )/chi2)
if (chi2.1e.l.Oe-2) then

".- print *,'minimization required',it,'iterations'
. print *,'ch12-',chi2

.-. do 122 p-l,np
print *,'parameter-',param(p)

122 continue
e=( eo( 1 )-y/ 2 .0 )+( nk+1.0 )*y
do 130 k-l,nk

e-e-y
write (7,*) e,' ',sa(nk+l-k)

130 continue
write (7,*) eo(l),' 1,.0
if (type.eq.1) then
call bbfunc(param,su,ynk,nJ,pikcnon)

end if
if (type.eq.2) then

call csfunc(param,su,nkn,nk,y,non
* ,knotl,knot2,knotl5,eo,p1,kc)

end if
e-eo( 1 )-y/2.0
do 131 k-l,nk
e-e+y
write ( 7 ,*) e,' ,su(k)

131 continue
go to 151

end if
if (chi2.lt.ni.and.dum3.lt.l.0e-2) then

c PRINT ACTUAL SPECTRUM AND THE APPROXIMATED SPECTRUM
c TO AN OUTPUT FILE
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print *,*minimization requiredl,it,literations'
print *,'ch12-',chi2
do 140 p1l,np

print *,*parameter-Otparam(p)
140 continue

e-(eo(lI)-Y/2 .O )+(nk+l )*y
do 149 k-l,nk

eine-y
write (7,*) e,' * ,sa(nk-k+1)

149 continue
write (7,*) eo(l),' ','0.0-

If (type.eq.1) then
call bbfunc(param,suty,nk,ni,pi,kc,non)

end If
if (type.eq.2) then

call csfunc( param,su,nkn,nk,y~non,
knotl,knot2,knotl5,eo,pi,kc)

end it
e-eo( 1)-y/2.O
do 150 k-l,nk

0 e-e+y
write (7,*) e,' * ,su(k)

150 continue
else

call minimize( paran,y,nknj pi ,kc,non,cb,siqma
* np,ni,h,r,type,nkn,knotl,knot2,knlotl5,eo)
go to 118

end if
151 continue

close (7)
stop
end

c PLANCKIAN BLACK BODY BASIS FUNCTION SUBROUTINE
subroutine bbfunc(param~su,y,nktnippi~kc,non)
real*8 eo(20),x,pi,kc,param(30),su(1280),e,y
integer k,j,nk,ni,non
common eo( 20)
print *,eo(l)
e-eo(l1)-( y/2.O)
do 2000 k-l,nk

eme+y
su( k)-O.0
do 1900 J-l,nJ
x-param( j)*( 15.0/(pi*kc*param( j+nj ))**4)
if (e/(kc*param(i+nJ)).gt.86.0) then

su( k)-0.0
else
su(k)-su(k)+x*(e**3.0/(exp(e/(kc*param( j+nj)))
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end If
if (non-eq.1.and.su(k).lt.0.0) then

su( k )0.0
end if

1900 continue
2000 continue

return
end

c CUBIC SPLINE BASIS FUNCTION SUBROUTINE
subroutine csfunc( param,su,nkn,nk,y,non,

*knotl,knot2,knotl5,eo,pi,kc)
real*8 param(30),kn(15),coef(15),num,den
real*8 planck,const,pi,kc,t,x,slope,su(1280),y,e
real*8 knotl,knot2,knotl5,eo( 20)
integer 1,k,non,nk,nkn
kn(l1)-knotl
kn( 2)-knot2
do 2010 J-3,nkn-1

kn(J1)-param( 1-2)
2010 continue

kn( nkn )-knot15
do 2020 J-2,nkn-1

* coef(J1)-param( J+nkn-4)
2020 continue

t-param( 2*nkn-4)
e-eo(l1)-y/2 .0
do 2035 k-1,nk

eme+y
su( k)-0 .0
do 2030 J-2,nkn

if (1.eq.2) then
if (e.ge.kn(3).and.e.lt.kn(4)) then
num-(e-kn( 1+1) )*( e-kn( 1+2) )*( e-kn( 1+3))
den-(kn(J1)-kn( 1+1) )*( kn(J1)-kn( 1+2) )* -

* (kn(j')-kn(J+3))
su( k)-coef(J1)*nurn/den+su( k)

end if
if (e.ge.kn(2).and.e.lt.kn(3)) then
slope-1.0/( kn( 2)-kn( 3))
su(k)-coef(J1)*(1.0+((e-kn(2))*slope))4+su(k)

end if
if (e.lt.kn( 2).or-e-ge.kn( 4)) then

su( k)-0. 0+su( k)
end if

end if
if (J.eq.3) then

if (e.ge.kn( 4).and.e.1t.kn( 5)) then
if (nkn.gt.6) then
num-(e-kn(J+1))*(e-kn(1+2))*(e-kn(1+3))
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* (kn(J)-kn(J+3))
su( k)-coef( 1)*num/den+su( k)

else

su(k )mO .O+su( k)
end ifI

eif ~tk()adel~n4)te
ui ( e-kn(3i))*( e-lkn(41) )( ten( +
dn=m(ekn( -n ) )*(kn( J 1)*-kn J+ ) )

*(kn( 3)-kn( J+2))%
su( k )icoef ( J )*num/den+su( k) 1

if (e.ge.kn( 2).and.e.lt.kn( 3)) then
slope-l.O/( kn( 3)-kn( 2))
su( k)-coef( j)*( (e-kn( 2) )*slope )+su( k)

end if
if (e.lt.kn( 2).or .e.ge.kn( 5)) then II

su( k )0.O+su( k)
* end if

end if
If (J.ge.4.and.j.lt.(nkn-2)) then

if (e.ge.kn(J+1).and.e.lt.kn(J+2)) then
if (kn(J+2).ne.kn(nkn-l)) then

num-( e-kn( J+l) )*( e-kn( J+2) )*( e-kn( J+3))

S. ~~den-( kn( J)-kn( JU) )*( kn( J)-kn( J+2) )*oil (kn(J)-kn(J+3))
su( k )scoef( J)*num/den+su( k)

else
9-k-OOsuk

end if
end if
if (e.ge.kn(j).and.e.lt.kn(J+1)) then
num-(e-kn( J-1 ))*( e-kn( 1+1 ))*( e-kn( J+2))
den-( kn( J)-kn( i-i ))*( kn( j)-kn( J+l ))*

* (kn(J)-kn(J+2))
su( k)-coef(JI)*nurn/den+su( k)

end if
if (e.ge.kn(J-1).and.e.lt.kn(j)) then

num-( e-kn( 1-2 ))*( e-kn( 1-1 ))*( e-kn( J+l))
den-( kn( J)-kn( J-2) )*( kn( j)-kn( i-i ))*

* (kn(j)-kn(j+l)) .
su( k )-coef ( J )*num/den+su( k

end if
if (e.ge.kn( J-2).and.e.lt.kn( i-i)) then

it (kn(J-2).ne.kn(2)) then
num-( e-kn( J-3 ))*( e-kn( i-2 ))*( e-kn( i-i))

* (kn( J)-kn( J-1)
su( k )icoef(JI)*num/den+su( k)

else
au( k)-O.O+su( k)
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end it
end it
it (e.lt.kn(.J-2).or.e.ge.knQ(e-2)) then

au( k )0. O+su( k)
end if

end if
if (J.eq.(nkn-2)) then

If (e.gt.kn(nkn-2).and.e.lt.kn(nkn-1)) then
slope-l.O/(kn(nkn-2)--kn(nkn-l))
su(k)-coef( J)*(1.O+((e-kn(nkn-2))*slope))+su(k)

end if
if (e.ge.kn(nkn-3).and.e.lt.kn(nkn-2)) then

num-( e-kn( J-2) )*( e-kn( J- ) )*( e-kn( :+1))
den=( kn( J )-kn( J-2) )*( kn( J )-kn( J-1 ))

* (kn(J)-kn(J-41))
su( k )coef(JI)*num/den+su( k)

end if
if (e.ge.kn(nkn-4).and.el1t.kn(nkn-3)) then
num-( e-kn( J-3) )*( e-kn( 1-2) )*( e-kn(J-1))
den-( kn( I)-kn( 1-3 ))*( kn( I)-kn( 1-2 ))*

* (kn( J)-kn( J-1l)
su k )-coef(JI)*num/den+su( k)

end if
if (e.lt~kn(nkn-4).or.e.ge.kn(nkn-l)) then

Bu( k )0.Q+su( k)
end if

end if
if (J.eq.(nkn-l)) then

if (e.ge.kn(nkn-2).and.e.1t.kn(nkn-1)) then
slope-i. O/( kn( nkn-1 )-kn( nkn-2))
su( k)-coef(JI)*( (e-kn( nkn-2) )*s lope )+su( k)

end if
if (e.ge.kn(nkn-3 ).and.e.lt.kn(nkn-2)) then

num-( e-kn( J-3) )*( e-kn( 1-2) )*( e-kn( 1-1))
den-( kn(J1)-kn( J-3 ))*( kn(JI)-kn( 1-2 ))*

* (kn(I)-kn(1))
su( k )-coef ( J )*num-'den+su( )c

end if
if (e.lt.kn(nkn-3 ).or.e.qe.kn(nkn-l)) then

su( k )0.O+su( k)
end if

end if
if (J.eq.nkn) then

if (e.ge.kn(-1l).and.e.le.kn(I)) then
x-15.O/(pi*kc*t )**4
planck-x*( kn(i-i )**3.O )/

* (exp(kn(I-l)/(kc*t))-l.O)
const-coef( I-i)/planck
if (e/(kc't).ge.69.O) then

ou( k )0.O+su( k)
else

su( k )-const*x*( e**. .0 )
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*(exp(ea/( kc*t))-l.O0)+su(k)
end i f

else
su( k)-O.0+su( k)

end if

end i fI
it (non.eq.l.and.su(k).lt.0.O) then
su(k)0O.O

end if
2035 continue

returnI

c SUBROUTINE TO MINIMIZE CHIi SQUARED
* subroutine minimize(parampypnkpnj,pi,kc,non,c

*,b,sigma,np~ni~hrtype,nkn,knotl,knot2,knotl5,eo)
real*8 grch12(30),param(30),b(20),c(20),sigma(20)
real*8 gradc(30),sprime(30),pprime,t
real*8 y,pi,kc,r(20,1280),h( 30,30),norms,s( 30)
real*8 v(30,1),gprime(30),g(30),q(30,l),a(30,30)
real*8 duml,sumi,sumj
real*8 sumk,su(1280),z(30,30),sump,sumo,pc(30),l
real*8 kn(15),knotl,knot2,knotl5,eo(20)
integer nkn,p,np,i,ni,o,reset,nk,nj non, j,k,type

c CALCULATE THE GRADIENT OF CHI SQUARED
t-0
do 2500 p-l,np

grch12(p )-0.0
call gradientc( param,y,nk,nj ,pi,kc,nonc,

*gradc,rtnp~ni,p,type,nkn~knotl,knot2,knotl5,eo)

do 2400 i-l,ni
grch12( p)-grchi2( p)+( (c(i )-b( i ))/( sigma( i)**2))

* *gradc( i)
2400 continue

grch12(p)-grchi2(p)*2.0
2500 continue
2525 continue

c CALCULATE THE SEARCH DIRECTION
do 2600 p-l,np

sprime(p)-0.0
do 2550 o-l,np

spr ime( p )--h( p, o )*gr ch 12( o )+spr ime( p)
2550 continue
2600 continue

c NORMIALIZE TO FIND THE UNIT SEARCH DIRECTION
dumlinO.0

redo 2700 p-l,npA

270 duml-duml+sprime(p)**2.0
2700 continue
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2800 cniu

*,rpbvsigmaphpresetplvtypepnkn,knotl,knot2,knotl5,eo)
if (reset.eq.1) then
resetO .0
do 2820 p-1,np

do 2810 o1l,np
if (o.eq.p) then
h( go )1l.0

else
h(p,o )-0.0

end if
2810 continue
2820 continue

go to 2525
end if

2850 continue
do 2900 p'DTnp

pprime( p)-param( p)+t*s( p)
2900 continue

it (type.eq.2) then
do 2903 p-1,nkn-3

do 2902 J-l,nkn-3
kn( J+2)inpprime( j)

2902 continue
kn(l1)-knotl
kn( 2)-knot2
)cn( nkn )-knotl5
it (kn(p+2).le.kn(p~l).or.kn(p+2).ge.kn(p+3)) then

t-t/2.*0
go to 2850

end if
2903 continue

end if
do 2904 pinl,np

print *,Iparameterm,param(p),s)p)',s(p),tn',t
2904 continue

c CALCULATE NEW H MATRIX BASED ON NEW PARAMETERS
do 2905 p-1,np

v( p,1)-ppr ime( p)-param( p)
2905 continue

c CALCULATE A NEW C( I) FOR NEW PARAMETERS
If (type.eq.1) then

call bbfunc(pprimue,su~y,nk,ni,pi,kc,non)

call cif cprmes~k~k~~ ~nt
if (type.eq.2) then

end if



.~ ~ ~ ~ d 2908 1 *-1,ni "WV~ ~' -. -~

. . . . . . .-. - -. * w.Or..- w

do 290 i-,n

pc( i)-pc( i)+su(k)*r( i,k)*y
2907 continue
2908 continue

do 2915 p-1,npI
call gradientc(pprime,ypnk,nj,pivkcnon,pc

* gradc,r,np~ni,p,type,nkn,knotl,knot2,knotl5,eo)
gprime(p)-0.0
do 2910 i1lni

gprime( p)-gprime( p)+( (pc( i)-b( i) )/sigma( i)**2)I
2910 continue

gprime(p)-gprime(p )*2.0
2915 continue

do 2925 p-l,np

call gradientc( paramytnkpnj,pi,,kc,non,cI
* gradc,r,nppniptypepnkn,knotl,knot2,knotl5,eo)
g(p )-O.0

* . do 2920 i1I,ni
g(p )-g( p)+( (c( i )-b( i) )/sigma( ± )**2 )*gradc( i)

2920 continue

g(p )-g( p)*2.0I
~ ,. ~do 2930 p-l,np

q(p,l)-gprime(p)-g(p)
2930 continue

do 2936 p-1,np

do 2934 o1l,npI
do 2932 J-1,1
sum)=sumj+v(p,i)*v(o,j)

2932 continue
a( p,o )-sumj

2934 continueI
do 2942 J-1,1

do 2940 i1l
sump-0 .0
do 2938 p-1,np

9 sump-sump+v(ppj )*q(p~i)
- -2938 continue

dumi -uump
2940 continue
2942 continue

do 2946 p-lnp
do 2944 o-l,np i

a( p,o )a( ppo)/duml
2944 continue
2946 continue

~~ ~ do 2956 p-l,npD.1
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do 2954 o-1,np
sumj-0.0
do 2952 J-lnp

sumi-O.0
do 2950 1-1,1

sumk-0.0
do 2948 k-l,np
sumk-sumk+q(k ,i )*h(k,o)

2948 continue
sumi-sumi+sumk*q(J,i)

2950 continue
sumj-sumj+sumi*h( p, j)

2952 continue
z(p,o)=sumJ

2954 continue
2956 continue

do 2964 i-1,1
do 2962 J-1,1

sump-0.0
do 2960 p-l,np
sumo-0.0
do 2958 o-l,np
sumo-sumo+h( p,o )*q( o, j)

2958 continue
sump-sump+sumo*q(p,i)

2960 continue
duml-sump

2962 continue
2964 continue

do 2995 p-l,np
do 2993 o-l,np
z(p,o )-z( p,o )/duml
h(p,o )-h(p,o )+a(p,o )-z( p,o)

2993 continue
2995 continue

c LET PPRIME EQUAL THE NEW PARAMETERS AND RE-EVALUATE CHI
c SQUARED

do 3000 p-l,np
param( p )ipprime( p)

3000 continue
c LET C(I)-PC(I)

do 3010 i-l,ni
c( i )-PC( i3010 continue

return

end

c SUBROUTINE TO CALCULATE THE STEP SIZE IN THE UNIT

c SEARCH DIRECTION

subroutine linsearch(np,param,t,synk,nj,pikcnon

*,niDrbsigmahresetltypenknknotlknot2,knotl5,eo)
D. 16



* real*8 h(30,30),h2,ht,m,,t,to,ho~niopt2,lpm2,zpduml
real'8 tl,w,musigna(20)
real*8 param(30),s(30),y,pi,kc,r(20,1280),b(20)
real*8 knotl,knot2,knotlS,eo( 20)

integer nknttypenp,reset,ninj nk,non
t-0.0 I
call calcfunc( np,paramtt,y,nk,nJ ,pipkc~non
*,ni,r,htgbpsigmam,type,nkn,knotl,knot2,knotl5,eo)

* ho-ht
mo-rn
if (mo.gt.0.0) then

reset-i 7
end if
toO0.0
if(ho.le.l) then

l-ho+( mo/2 .0)
end it
It (l.0.lt.(-2.0*(ho-l)/mo)) then

t2-1 .0
else

t2--2.0*( ho-i )/mo

*end if
3600 continueU

* t-t2
call calcfunc( np,param,t,s,y,nk,nj,pi,kc,non

*,ni,r,ht,b,sigmapm,type,nkn,knotl,knot2,knotl5,eo)
h2-ht
m2-m

if (m2.gt.0.0) thenU
z-3.* *( ho-h2 )/( t2-to )+mo+m2
duml-z*2 .0+mo+m2
if(duml.eq.0.0) then
tl-to~mo*( t2-to )/( 2.0*( z+mo))

else
w-sqrt( z**2-rno*m2)I
mu-( m2+w-z )/( 2.*0*w~m2-mo)
tl-t2-nu*( t2-to)

end if
end if
if(m2.le.0.0.and.h2.gt.ho) then

t2-( to+t2 )/2.0
go to 3600

end if
if (m2.eq.0.0.and.h2.lt.ho) then
tl-t2

end if
if Cm2.1t.0.0.and.h2.le.ho) then
duml-t2-to
to-t2
ho-h2
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t2-t2+2.O*( durni)
go to 3600

end if
if (m2.eq.0.O.and.ho.eq.h2) then
ti-to

end if
tintl .
return

end

c SUBROUTINE TO CALCULATE THE FUNCTION TO MINIMIZE m
c H-F(PARAII+T*S)

subroutine calcfunc(np,pararn,t,s,y,nk,nJ,pi~kc
*,non~ni,r,ht,b,sigma,m,type,nkn,knotl,knot2,knotl5,eo)
real*8 y,tparar(30),param(30),su(1280),b(20),tc(30)
real*8 t,gradc(30),m,s(30),e,ht,sigma(20)
real*8 grch12(30),pi,kc,r(20,1280)
real*8 knotl,knot2,knotl5,eo( 20)
integer nkn,type,p, i,np,ni ,nk,k,non,nj
do 4000 p-1,np
tpar am( p )-param( p )+t*s(p)

4000 continue
c CALCULATE THE UNFOLDED SPECTRUM

call bbfunc(tparam,suy,nk,nJ,pi,kc,non)
end if
if (type.eq.2) then ii

call csfunc( tparam,su,nkn,nk,y~non,knotl
* knot2,knotlS,eo,pi,kc)

end if
c CALCULATE C( I) FOR NEW PARAMETERS

do 4200 i-l,ni

tc( i )u..

tc( i)-tc( i)+su(k)*r( i,k)*y
4100 continue
4200 continue

c CALCULATE CHI SQUARED FOR THE NEW PARAMETERS
ht-0.0

do 4300 i-l,ni
ht-ht.( (tc( i)-b( i ))/sigma( i ))**2.0

c CALCULATE THE SLOPE OF CHI SQUARED
* do 4500 p-1np

call gradientc(tparam,y,nk,nJ,pi,cc,nonI

*,tcogradc,r,np,ni,p,typenkn,knotl,knot2,knotl5,eo)
grch12( p)-0.0
do 4400 i-1,ni

* - ~~ grchi2(p)-grchi2(p)+((tc( i)-b( i))/sigma( i)**2.0)
*gradc(i)
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4400 continue:1
qrchi2( p)-2.0*grchi2( p)

4500 continue
M-0.0
do 4600 p-l,np

m-m+grch12(p )*s(p)
4600 continue

return
end

c SUBROUTINE TO CALCULATE THE GRADIENT OF C(I)
subroutine gradientc(param,y,nk,njtpi,kcvnon,c,gradc

*,r,np,ni,x,type,nkn,knotl,knot2,knotl5,eo)
real*8 delta,newpar(30),param(30),f(30),su(1280)

real*8 r(20,1280),gradc(30),c(20)
real*8 knotl,knot2,knotl5,eo(20),pi,y,kc F
integer nkn, i,x,ni ,ppnptk,nk,nj ,non,type
delta-0.*01
do 5000 pml,np

if (p.eq.x) then
newpar( p)-param( p)+delta*param( p)

else
newpar( p)-param( p)

end if
5000 continue

if (type.eq.1) then

call bbfunc(newpar~su,y,nk,nj,pi~kc,non)
end if ,
if (type.eq.2) then

call csfunc( newpar,su~nkn,nk,y,non,knotl
* knot2,knotl5,eo,pi,kc)
end if

c CALCULATE C(I) FOR THE NEW PARAMETERS (LET IT EQUAL

c F(I))
do 5200 i-l,ni

do 5100 k-1,nk
f( i )if( i)+su( k)*r( i,k )*y

5100 continue

5200 continueI
gradc( i)-( f( i)-c( i ))/( delta*param( x))
if (abs(f(i)-c(i)).lt.le-6) then
print *,"WARNING F(I)-C(I) LESS THAN l.OE-61

end if
5300 continue

return
end
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Appendix E: Validation Results

, This appendix is a continuation of the results presented in Section V. The

cases studied using one planckian basis function are presented in Table XII and

the final four cases studied using cubic spline basis functions with fixed knots are

presented in Table XIII. Additionally, the linear plots of the actual and unfolded

spectra for the BC cases are presented. The actual and unfolded spectra for the

BP and BF1, BF2, BF3, and BF4 were identical so no plot is presented. Also, the

plots for cases BF5, BF6, BF7, and BF8 are presented even though x2 was greater

than 20.0.

TABLE XII r%
Continuation of the Planckian Basis

Function Validation Test (a,b)
Parameters

Initial Unfolded
a T a T

2.0 5.0 2.0 5.0
3.0 3.0 2.0 5.0
3.0 4.0 2.0 5.0
1.0 6.0 2.0 5.0
0.5 6.0 2.0 5.01.0 2.0 2.0 5.0
1.0 4.0 2.0 5.0
4.0 7.0 2.0 5.0

a. Actual parameters equal 2.0 and 5.0
b. o , = 0.01 and X2< 0.01 in all cases The initial case is the initial guess at the

unfolded spectrum
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TABLE )GH -':
Continuation of the Validation Cases for the Cubic d-1

Spline Basis Functions With Fixed Knots (a,b,c)
Case Spectra Knots Coefficients T
BF5 Actual 10.0 25.0 4.0 5.0 3.0 10.0

50.0 80.0 1.6 1.0
Initial 5.0 30.0 2.0 7.0 1.0 2.0

40.0 60.0 3.0 4,0
Unfolded 5.0 30.0 3.9 4.6 2.5 14.0 33.0

40.0 60.0 1.9 1.5

BF6 Actual 5.0 10.0 4.0 5.0 3.0 10.0
25.0 50.0 1.6 1.0

Initial 7.0 30.0 2.0 7.0 1.0 20.0
70.0 90.0 3.0 4.0

Unfolded 7.0 30.0 4.6 3.8 -0.3 2.0 2.3e4
70.0 90.0 -17.0 -81.0

BF7 Actual 5.0 10.0 4.0 5.0 3.0 10.0 hi
25.0 50.0 1.6 1.0

Initial 7.0 30.0 2.0 7.0 1.0 2.0
70.0 90.0 3.0 4.0

Unfolded 7.0 30.0 5.0 3.5 1.5 -12.0 1.9e3
70.0 90.0 0.55 -0.17

BF8 Actual 10.0 25.0 4.0 5.0 3.0 10.0 4
50.0 80.0 1.6 1.0

Initial(c) 5.0 30.0 2.0 7.0 1.0 20.0
40.0 60.0 3.0 4.0 I

Unfolded 5.0 30.0 3.9 4.6 2.5 14.0 33.0
40.0 60.0 1.9 1.5

a. O"= 0.01
b. Convergence criteria: X'2 1.Oe-2 for all cases or 0.01% change in k- for case .

BF5 and 0.1% change inX- for cases BF6, BF7, BF8

c. Fixed knots at 0.0.1.0,128.0 are implicit in definition of these splines. I
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Appendix F: Test Case Results

This appendix is a continuation of Section V and presents the linear plots of

the cases presented in Section V. If the linear plot of the actual and unfolded

spectra for a given test case is not in this section and the X, value for the case in

aSection V is acceptable (i.e. less than 20.0), then either the actual and unfolded

spectra match exactly or the plots were presented in Section V.
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Appendix G: Figure of Merit Study

In order to determine the accuracy of the approximation, eight figures of

merit were considered. The goal of this study was to determine if any of the

figures of merit could be related to x2. By relating the figure of merit to )2 , a

method for determining the accuracy of the unfolding procedure may be esta-

blished. The eight figures of merit are as follows: the average absolute error,

AAE; the average absolute relative error, A-ARE; the root mean square average

absolute error, RNIS.AAE; the root mean square average relative error. R.NSARE;

the weighted average absolute error, WAAE; the weighted average absolute rela-

tive error, W.ARE; the weighted root mean square average absolute error,

..WRNISlAALE; and the weighted root mean square average relative error,
0

\\T..NISARE. Equations (22) thru (29) present the figures of merit studied and the

approximations used by LCDR. Kirk lathews to produce a computer program to

.. calculate the figures of merit. The program was validated using case BC1 and the

TIK Solver mathematics package.

f IS.(E)-S.(E) IdE
AE IIS.(Ek)-Sa(E,) 1 (22)

RIS(Ek)-S,(Ek) I

S(Ek)+SO(Ek)
2

a,.~~ S,, ______)_-S.______

Due to the fact all the energy bin widths were equally spaced, the average abso-

lute error and average relative error can be calculated by dividing Equations (22)

and (23) by nk, the number of energy bins used to evaluate the integrals.

"'a G- I
: .-...

Ca.'a-1a.



Thus

AAE = AE (24)n k
R E

AARE = (25)
nk

RMSAAE = k (26)

RE ?

R.ISARE = R (27)

Finally the weighted figures of merit were calculated by weighting the absolute

error and relative error with a factor of 1/E.

Thus

.. = IS(E)-S.(E)I
EE

I.AAE IV44(E)-S (2S)

k(Ek)

IS.(E)-S(E)I
"" S. (E)+S. (E) -L

2

:. :',EIS.,( k )-S,.(E,)k __
k s. (Ek )+S. (Ek) Ek

The weighted figures of merit can then be calculated using Equations (21) thri

(27) by replacing the absolute error and the relative error with the weighted abso-

1,ite error and the weighted relative error respectively.

The results of this study are presented in Table XIV.

G-2':.7



TABLE XIV

Comparison Of Figures Of Merit
For Cases Studied (a)

RMS RMIS WRMS WRMS
Cs Xz AAB ARE AR RE WAAH WAARE A8R RE
NPO 0.010 4-e-4 0.012 7e-4 0.017 5e-4 0.010 9e-4 0.010
NCO 0.020 0.017 0.047 0.027 0.066 0.028 0.020 0.042 0.035
BC4 0.026 0.001 0.001 0.003 0.002 0.005 0.002 0.008 0.002

*BC2 5.4 0.014 0.013 0.029 0.017 0.037 0.014 0.053 0.018
NC04 5.5 0.06 0.11 0.12 0.13 0.23 0.091 0.34 0.11

*NP04 6.0 0.005 0.095 0.008 0.11 0.009 0.086 0.012 0.096
NC07 7.2 0.10 0.28 0.14 0.38 0.11 0.11 0.15 0.20
NC03 8.6 0.13 0.42 0.19 0.59 0.28 0.19 0.33 0.31
NC06 8.8 0.064 0.051 0.13 0.073 0.23 0.078 0.32 0.10
NC05 9.4 0.099 0.44 0.22 0.67 0.27 0.20 0.39 0.36
NP07 9.7 0.003 0.093 0.004 0.12 0.003 0.036 0.004 0.063
NC01 11.0 0.14 0.35 0.22 0.46 0.35 0.19 0.44 0.26
NP06 12.0 0.004 0.048 0.007 0.051 0.005 0.030 0.008 0.037

*NP05 13.0 0.006 0.17 0.012 0.23 0.010 0.10 0.015 0.14
*NC09 13.0 0.12 0.15 0.18 0.19 0.23 0.11 0.30 0.14

NP09 15.0 0.004 0.18 0.006 0.22 0.007 0.097 0.009 0.13
NC08 15.0 0.080 0.065 0.16 0.081 0.29 0.11 0.44 0.14
NP03 16.0 0.002 0.036 0.004 0.38 0.004 0.037 0.005 0.040

4PC3 16.0 0.005 0.071 0.008 0.22 0.009 0.46 0.012 0.86

.

NP08 17.0 0.005 0.086 0.011 0.10 0.012 0.092 0.017 0.10
*NC02 17.0 0.18 0.19 0.31 0.22 0.51 0.19 0.65 0.22

CP3 17.0 0.14 0.23 0.28 0.30 0.57 0.22 0.84 0.30
*CP4 17.0 0.14 0.27 0.28 0.45 0.56 0.23 0.84 0.33

NC1O 18.0 0.038 0.067 0.073 0.082 0.11 0.049 0.16 0.063
NPO1 18.0 0.004 0.28 0.005 0.42 0.003 0.092 0.004 0.21
NP10 18.0 0.003 0.042 0.005 0.049 0.004 0.027 0.006 0.032
BC3 19.0 0.071 0.13 0.089 0.22 0.094 0.050 0.12 0.11
CP2 20.0 0.12 0.086 0.30 0.12 0.59 0.20 0.90 0.29
NP02 29.0 0.003 0.15 0.004 0.20 0.003 0.054 0.004 0.10
BP5 33.0 0.081 0.20 0.93 0.35 0.078 0.064 0.091 0.17
BF8 33.0 0.081 0.20 0.93 0.35 0.078 0.064 0.091 0.17
PC2 38.0 0.003 0.058 0.003 0.14 0.003 0.22 0.004 0.57
Pci 71.0 0.020 0.29 0.029 0.43 0.028 0.77 0.039 1.11
BC1 230.0 0.094 0.17 0.12 0.22 0.10 0.096 0.14 0.16
CP1 380.0 0.60 1.7 0.85 1.8 1.3 1.0 1.6 1.3

*BP7 1,900 0.12 0.79 0.23 1.2 0.37 0.29 0.51 0.61
BP6 23,000 0.42 1.31 0.59 1.6 0.50 0.58 0.61 0.94

Ca. All figures of merit for case BP1, BP2, BP3, BF1, BF2,
BF3, and BF4 were less than 0.01
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Abstract
The purpose of this study was to develop the

° methodology for and to implement a computer program to
approximate a solution to a system of Fredholm integral
equations. The system of equations used in this study is
representative of the equations formed during the detection
of pulsed radiation using a series of detectors with
asymmetric response functions. Though general in nature and
applicable to all systems of fredholm integral equations,
the equations studied are of importance to the Defense
nuclear Agency with regard to the measurement of radiation
spectra during underground nuclear effects simulation
testing.

The deconvolution technique consisted of representing
the unfolded spectrum as a weighted sum of basis functions.
This unfolded spectrum, the actual spectrum, and a predicted
spectrum were then used to form a X = test statistic. By
ad~usting the parameters In the basis functions and their

weights, X was minimized and the unfolded spectrum was
corrected to approximate the actual spectrum.

The methodology for this deconvolution technique was
then converted into a general computer program. The
validation cases conducted on the two types of spectra
confirmed the reliability of the methodology and the
computer program. Additionally, an initial study with
simulated measurement error added to the
measured-to-predicted ratios showed that the actual spectrum
could not be returned exactly. The second study
approximated the actual spectrum with an unfolded spectrum
using a second set of basis functions. An acceptable
approximation was conducted; however, certain artifacts were
discovered in the unfolded spectrum. The validation cases
and preliminary test cases conducted prove that the computer
program based on the methodology presented in this study is
a viable means of approximating an actual radiation
spectrum.
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